Irrigation water management is an integral part of a conservation management system to support one or more of the following:

- Manage soil moisture to promote desired crop response
- Optimize use of available water supplies
- Minimize irrigation induced soil erosion
- Decrease non-point source pollution of surface and groundwater resources
- Manage salts in the crop root zone
- Manage air, soil, or plant microclimate

All irrigated cropland must have, at a minimum, the following essential practices as part of their conservation management system: Irrigation Water Management, Nutrient Management, Pest Management, and Conservation Crop Rotation. For nutrient management, in addition to a soil test to be taken, in order to evaluate risks due to nutrients, the phosphorus index (Section NM-9) and nitrogen index (this section), also located at http://www.nm.nrcs.usda.gov/technical/tech-notes/agro.html, need to be run. These help in evaluating the type of risk to surface and groundwater and choosing an alternative conservation practice or management practice to reduce the risk, such as leaching and runoff reduction practices. Nutrient management plans are developed to specify the source, amount, timing and method of application of nutrients on each field to achieve realistic yield goals, while minimizing movement of nutrients out of the root zone or off the field.

Nutrient applications associated with irrigation systems need to be applied according to Irrigation Water Management practice standard and Nutrient Management standards, <u>http://www.nm.nrcs.usda.gov/technical/fotg/section-4/std-specs.html</u>. The application rate (in/hr) for material applied through irrigation shall not exceed the water holding capacity of the soil root zone. Application amounts must be adjusted to match the soil intake rate. When applying manure with irrigation equipment, modifying the equipment can reduce the potential for volatilization of nitrogen from the time the manure leaves the application equipment until it reaches the surface of the soil (e.g. reduced pressure, drop down tubes for center pivots). Nitrogen volatilization from manure in a surface irrigation system will be reduced when applied under a crop canopy. Schedule salt leaching events to coincide with lower residual soil nutrients and pesticides.

Nitrogen Index – Page 1 of 2

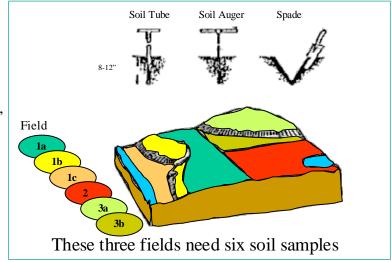
Index Items Transport Factors	Factor Weight	None (0)	Low (1)	Medium (2)	High (4)	Very High (8)	Surface Loss Rating (Col* factor weight)	Leaching Loss Rating (Col* factor weight)
Runoff Class	1.0	Negligible & Very Low (0)	Low (1)	Medium (2)	High (4)	Very High (8)		
Permeability Class	1.0	Impermeable to Very Slow (<0.0015 to 0.06 in/hr) (0)	Slow to Moderately Slow (0.06 to 0.6 in/hr) (1)	Moderate (0.6 to 2 in/hr) (2)	Moderately Rapid to Rapid (2-20 in/hr) (4)	Very Rapid (>20 in/hr) (8)		
Annual	1.0	<8"	8-15"	16-22"	23-30"	>30"		
Precipitation		(0)	(1)	(2)	(4)	(8)		
Irrigation water Management	1.0	None (0)	Insignificant runoff and/or deep percolation – total amount applied = consumptive use; follows 449 standard (1)	Little runoff and/or deep percolation – total amount applied does not exceed 110% of consumptive use (2)	Some runoff and/or deep percolation – total amount applied does not exceed 125% of consumptive use (4)	Significant runoff and/or deep percolation – total amount applied exceeds 125% of consumptive use (8)		
Water runoff management	1.0	Grasses, perennial vegetation CRP (0)	No-till and/or strips/ Terraces plus buffers, filter strips or tailwater recovery (1)	Residue management (>30% at planting) and/or strips/terraces (2)	Conventional Tillage, some residue (4)	Fallow condition, no residue (8)		
Irrigation Erosion ¹	1.0	Not Irrigated or No Furrow Irrigation (0)	Tailwater recovery or QS>6 for very erodible soils or QS<10 for other soils (1)	QS>10 for erosion resistant soils (2)	QS>10 for erodible soils (4)	QS>6 for very erodible soils (8)		
Distance ² to surface Waterbody	1.0	>1000' (0)	500 to 1000' (1)	200' to 500' (2)	30' to 200' (4)	<30' (8)		
Distance ² to	1.0	>150'	99' to 150'	20' to 99'	10' to 19'	<10'		
aquifer		(0)	(1)	(2)	(4)	(8)		

¹QS Note: Q = flow rate of water introduced into the furrow (in gallons per min). S = furrow slope (in ft/100 ft, percent). Q is multiplied by S. For example, 5 gpm x 2% = 10. ²Distance measured from edge of field to surface waterbody or bottom of root zone to an aquifer (usable water supply not to a seasonal high water table)

Nitrogen Index – Page 2 of 2

Index Items	Factor Weight	None (0)	Low (1)	Medium (2)	High (4)	Very High (8)	Surface Loss Rating	Leaching Loss
Source Factors							(Col* factor weight)	Rating (Col*factor weight)
Application Rate	1.5	None applied	Nitrogen applied at agronomic rates with soil test; follows 590 standard	Nitrogen applied at rates greater than 100 to 150% of agronomic rates; with soil test	Nitrogen applied at rates over 150% of agronomic rates; with soil test	No soil test		
Application Form	1.0	(0) None applied	(1.5) Commercial fertilizer w/calibrated application equipment	(3) Commercial fertilizer but w/o calibration of application equipment Or Organic w/ manure test & calibrated application	(6) Organic w/manure Test but w/o calibrated application equipment	(12) Organic w/o manure test or calibration of application equipment		
Commercial Fertilizer Timing (and/or)	1.0	(0) None applied	(1) Grid or zone sampling; precision application	(2) Spring Applic. and/or top dressed during growing season	(4) Split applications on fall seeded crops (starter in fall/top dressed spring/summer)	(8) Application more than 1 month ahead of planting		
Organic Fertilizer Timing	1.0	(0) None applied	(1) Incremental application applied as crop uses N	(2) All manure applied less than 1 month before planting	(4) Application more than 1 month ahead of planting	(8) Application in winter months (December and January)		
Application Method	1.0	(0) None applied (0)	throughout year (1) Banded/ injected or precision applied (1)	(2) Broadcast/ surface applied, incorporated within 5 days (2)	(4) Broadcast/surface applied, incorporated more than 5 days (4)	(8) Surface applied, not incorporated (8)		
			(1)	()	nted Rating (Sum	· · · ·		
					<u>C</u>	Rating Low Potential Medium Potential	Surface Water <17 17 to 34 34 to 68	Ground Water <14 14 to 28 28 to 58
				1 otal Weigh	Ν	Rating Low Potential	<17 17 to 34	W 14

Very High Potential


>68

>58

Why Soil Tests are Important

Why Sample

Soil testing is the key to nutrient management. Without a preplant soil test, fertilizing is a guess at best. Most soil testing is very cost effective. Many times growers put on fertilizer as "insurance" instead of testing the soil to see if fertilizer is needed. People could save as much as \$100/ac by spending \$20 on a soil test. NMSU has guidelines for soil sampling (Guide A-114), <u>http://cahe.nmsu.edu/pubs/_a/a-114.html</u>, and interpretations (Guide A-122), <u>http://cahe.nmsu.edu/pubs/_a/a-122.html</u>. NRCS Agronomy Technical Note 58, <u>http://www.nm.nrcs.usda.gov/technical/tech-notes/agro/ag58.pdf</u>, provides instructions for use of NMSU Fertilization Interpretation Software (NRCS 590 Job sheet), <u>http://www.nm.nrcs.usda.gov/technical/tech-notes/agro.html</u>, once the user has obtained a proper soil test. For routine analysis, request pH - saturated paste, electrical conductivity (EC): saturated paste, soil organic matter (OM): Walkley Black, nitrate nitrogen (N) (KCl or water soluble method), phosphorus (P) (Olsen-P test if pH>6.8), potassium (K) (water soluble (preferred) or ammonium acetate method), magnesium, calcium, and sodium (SAR).

Many soils and crops in NM also show a need for sulfur, zinc, manganese, and other micronutrients (DTPA extractable Fe, Zn, Mn, and Cu). Those listed are part of the standard/micronutrient analysis done at the NMSU Soil, Water and Agricultural Testing Laboratory in Las Cruces; other soil testing laboratories can run the same tests, but the client needs to specify which procedures to use to enable proper nutrient recommendations for NM crops.

When and How to Take Soil Samples

- 1. The best time to sample is before spring fertilization or after harvest from uniform sampling areas with similar management.
- 2. Use any of the tools shown below to take sample. Sample to the plow depth (Usually 8-12").

Each sample should represent a uniform area. Size up the area and observe these variations:

Differences in texture (sand, silt, clay), color, slope, degree of erosion, drainage, past management (fertilization, manure application, rotation, irrigation type, etc.).

- 1. Take 15 to 20 subsamples from each uniform area. Mix thoroughly in a plastic container and fill a plastic bag with a pint of soil. This is the composite sample, which represents the field or area. Label each container with your name and address and the field or sample identification (ID) corresponding to the ID on the information sheet.
- 2. Avoid (or sample separately, if of interest) such areas as: Dead or back furrows, old straw piles, waterways, terraces, fencerows, and unusual or difficult spots.
- 3. Repeat the sampling procedure outlined on each uniform area you want tested.
- 4. Air-dry the samples before mailing. Do not use heat for drying. Wet samples will delay analyses up to one week.

Where to Send Soil Samples for Analysis:

Following NRCS 590 Nutrient Management Standard and NMSU Fertilization Interpretation software, soil test analyses shall be performed by laboratories that are accepted in the North American Proficiency Testing Program or those laboratories whose tests are accepted by the NMSU (partial list of labs below).

Partial Listing of Soil Testing Laboratories

Agricultural Testing and Research Lab P.O. Drawer 1318 Farmington, NM 87499 505/326-2730

Servi-Tech Labs

P.O. Box 1397 1816 E. Wyatt Earp Dodge City, KS 67801 308/234-2418 www.servi-techinc.com

Inter Ag Services, Inc. IAS Laboratories

2515 E. University Dr. Phoenix, AZ 85034 602/273-7248

NMSU SWAT Testing Lab

MSC 3Q, Box 30003 Dept. of Agronomy and Horticulture Las Cruces, NM 88003 505/646-4422

Ward Laboratories

4007 Cherry Ave Kearney, NE 68848-0788 402/476-2811 www.wardlab.com

MDS Harris

621 Rose St. P.O. Box 80837 Lincoln, NE 68501 www.mdsharris.com

(listing of North American Proficiency Testing participating laboratories available at http://www.naptprogram.org/pap/)

NMSU Land Grant University Soil Testing Information Sheet: IMPORTANT

If your sample is to be tested for available zinc and iron, rusty tools will contaminate the sample with iron, and galvanized or brass containers will contaminate it with zinc. The resultant soil analysis could indicate a sufficiency of these elements when actually a deficiency exists. Use plastic container when possible.

ALL EQUIPMENT MUST BE ABSOLUTELY CLEAN SOIL TESTS AVAILABLE

TEST	PURPOSE	COST PER SAMPLE
Standard: pH, total soluble salts, sodium adsorption ratio, organic matter, nitrate-nitrogen (water extractable), phosphorus (bicarb) method, and water soluble potassium.	Basic evaluation for characterizing the soil fertility status for growing crops. A fertilizer recommendation is given with sufficient information. Normally this test is sufficient unless a special problem is suspected.	\$19.00
Subsoil Nitrate:	Evaluation of nitrate supply below the plow depth. Fertilizer nitrogen recommendation based on routine soil test of surface soil is adjusted if subsoil nitrate is high.	\$5.00
Iron and Zinc:	Information on the micronutrients Iron and Zinc. Zinc is usually deficient in New Mexico soil. Carbonates interfere with iron and zinc uptake.	\$6.00
Manganese and Copper:	Information on the micronutrients Manganese and Copper.	\$6.00

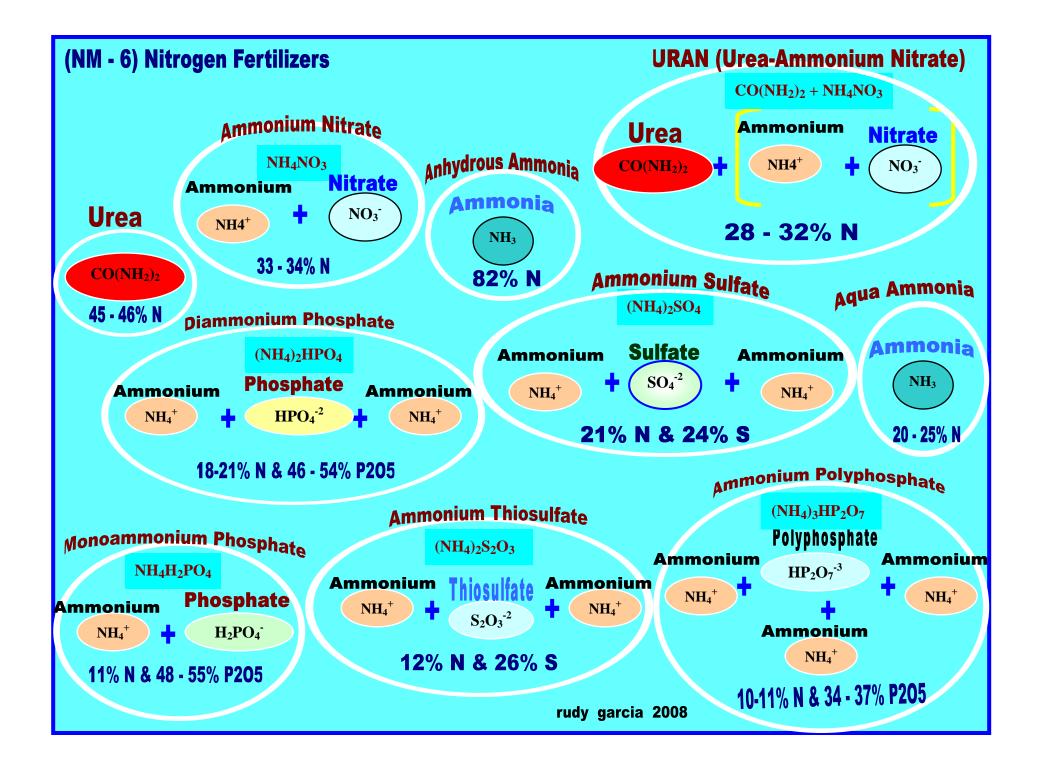
Checks or Money Orders are made payable to New Mexico State University. Always verify prices by contacting the lab or visiting their website at <u>http://swatlab.nmsu.edu/</u>. Click on soil for a price list. Water and plant samples can also be tested at this laboratory.

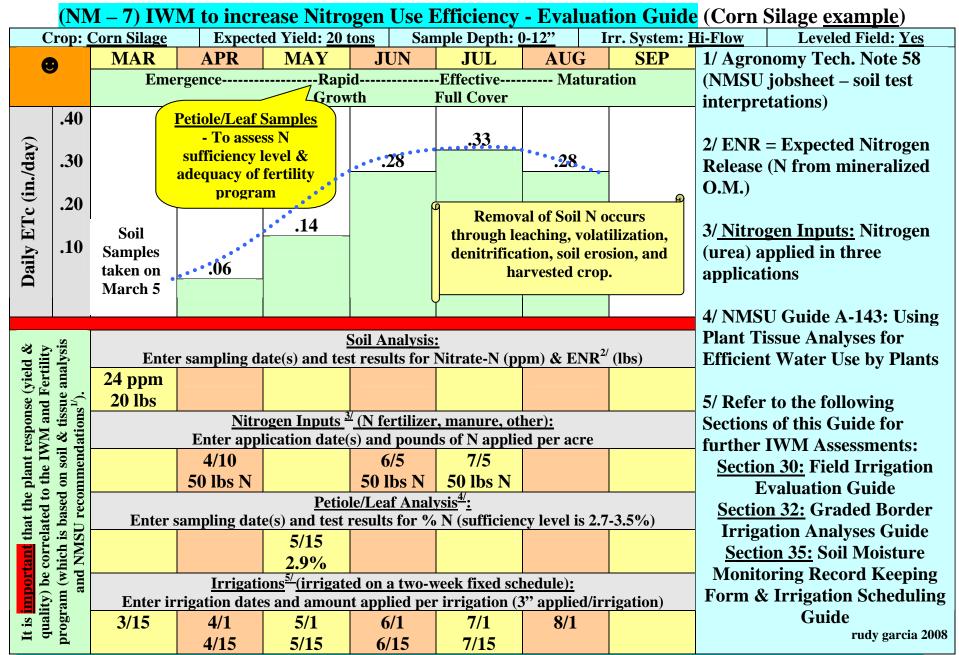
Information on additional tests (soil, water, and plant) is available from the Soil, Water, and Agricultural Testing Laboratory. Expected turn-around time is one week in lab. If a delay is expected, you will be notified by phone.

USPS Address:	Physical Address:
New Mexico State University	New Mexico State University
SWAT LAB	SWAT LAB
Box 30003, Dept. 3Q	2290 Knox Street, PGEL West
Agronomy and Hort Dept.	Las Cruces, NM 88003
Las Cruces, New Mexico 88003	

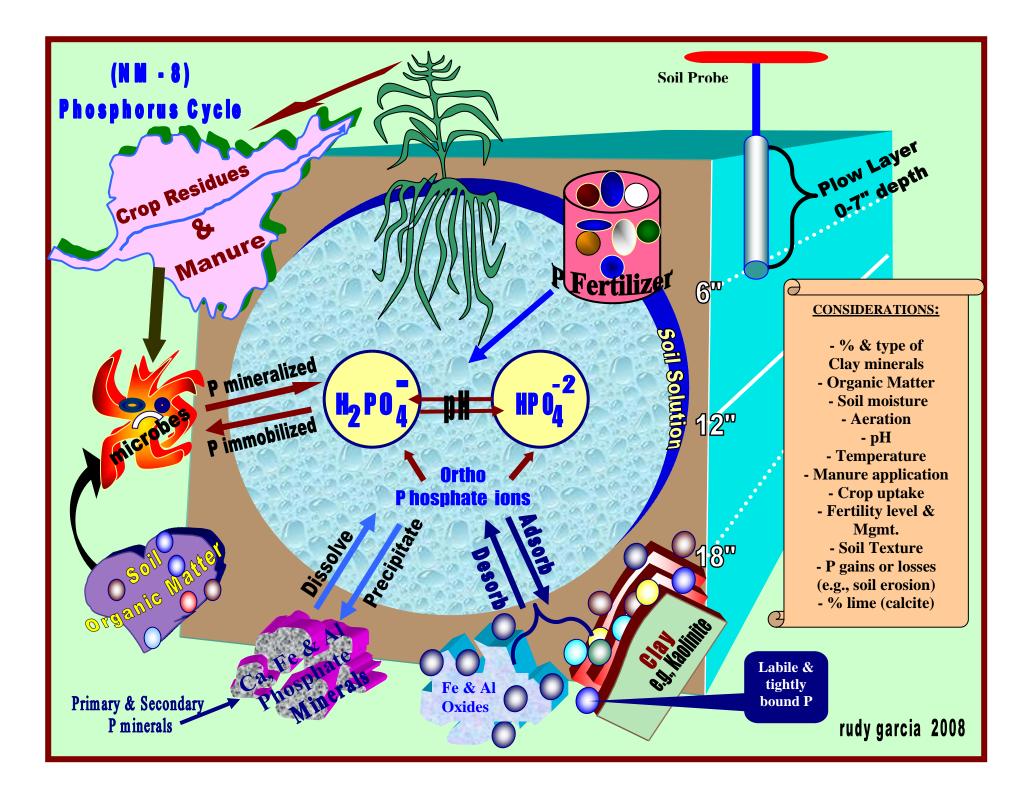
Attachment 1		SOIL SAMPLE	CHECK DESIRED ANALYSIS	
Sampling Date:		INFORMATION SHEET		
Name		NEW MEXICO STATE	Standard	\$19.00
Address		UNIVERSITY	Subsoil Nitrate (subsoil sample)	\$5.00
City Sta	ate Zip	SWAT LABORATORY	Iron & Zinc (w/standard test)	\$6.00
Phone Number	()		Manganese & Copper (w/std)	\$6.00
Email address:		Received Date:	Verify Prices at: http://swatlab.nr	nsu.edu/soilist.html
Sample is for:	Farm Home Orchard	Farm Home Orchard	Farm Home Orchard	Farm Home Orchard
Lab ID Number				
Field ID				
Geographic Location				
(TRS, X, Y, Lat/Long)				
Acres or Square Feet				
Sampling Depth (circle one)	0-2 0-4 0-6 0-8 0-12 12-24	0-2 0-4 0-6 0-8 0-12 12-24	0-2 0-4 0-6 0-8 0-12 12-24	0-2 0-4 0-6 0-8 0-12 12-24
Last years crop				
This years crop				
Yield Goal				
Orchard or Vineyard?				
Establishment year &				
number per acre				
Organic Amendments	Enter Quantity of Each	Enter Quantity of Each	Enter Quantity of Each	Enter Quantity of Each
Solids				
Liquids				
Irrigation System	Drip Flood Sprinkler	Drip Flood Sprinkler	Drip Flood Sprinkler	Drip Flood Sprinkler
Depth to Groundwater	□<6' □ 6-12' □ >12'	□ <6' □ 6-12' □ >12'	□<6' □ 6-12' □ >12'	□<6' □ 6-12' □ >12'
Water Nitrate-N Credit	mg/l (ppm)	mg/l (ppm)	mg/l (ppm)	mg/l (ppm)
Contact Info for Person taking sample:				
COMMENTS:				

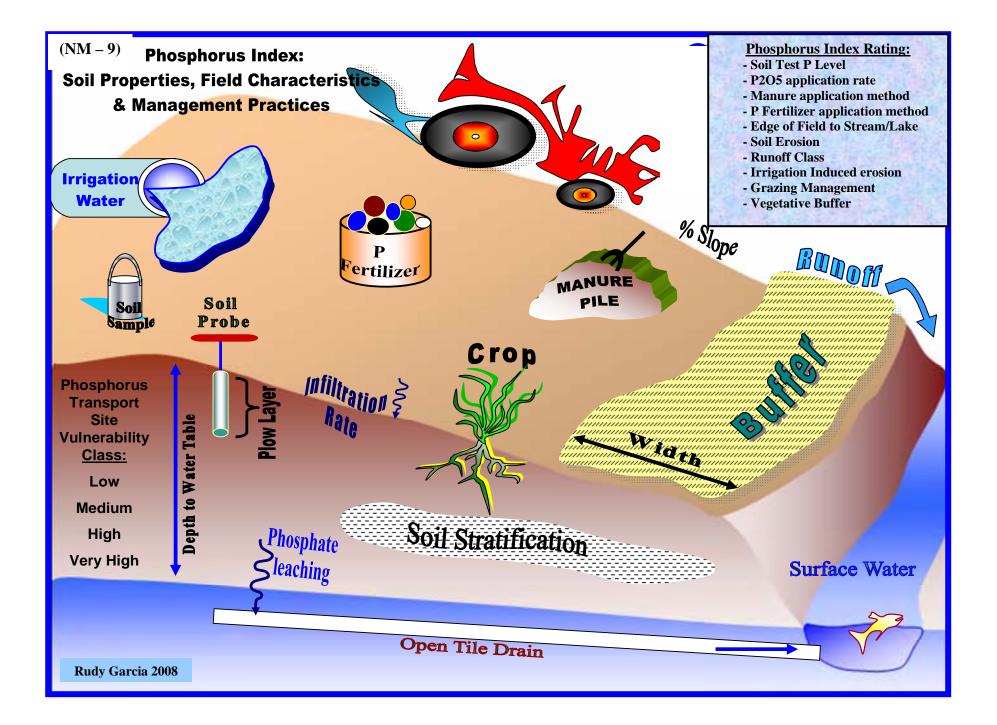
Please remove any rocks from the sample. Submit a minimum of 2 cups of soil that has been air-dried. Avoid using rusty tools or containers.

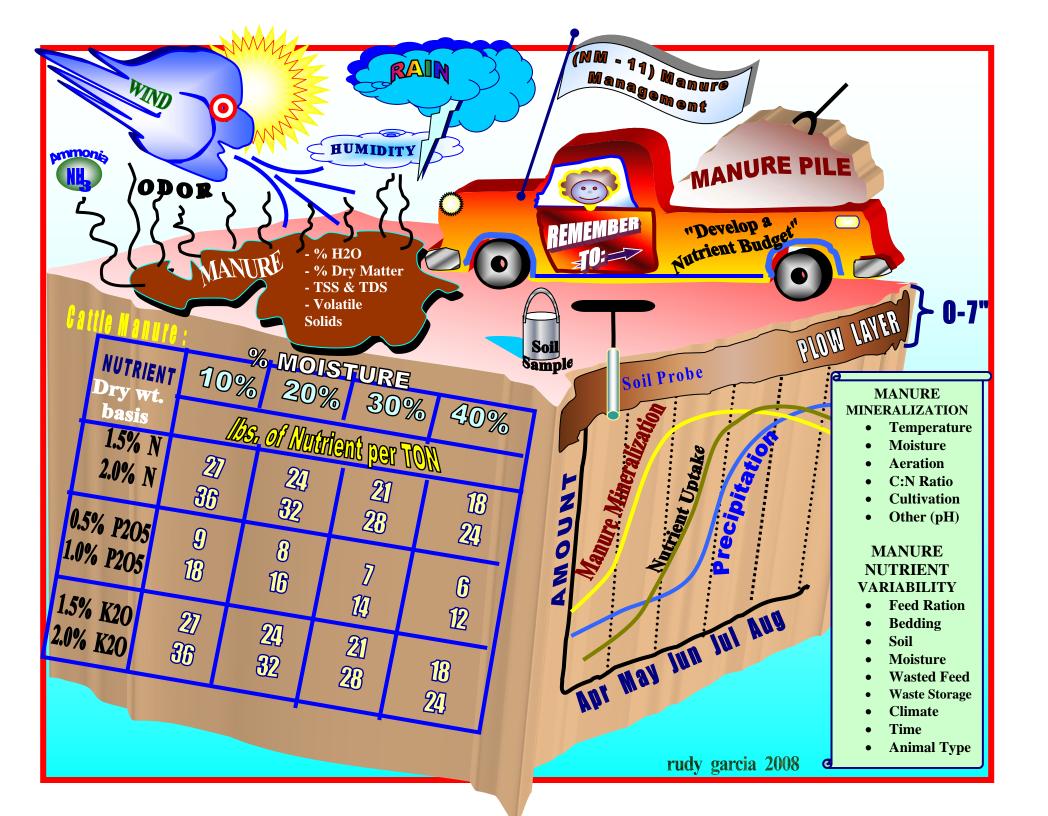

	(NM – 3) Soil Fertility Interpretation GUIDE/Form (ETc example is for Corn Silage)										
							of Soil (Sample Sample Date			
Soil Nutrient	t Status	Mar	Apr	May	Ju	ın	Jul	Aug	Sep	Soil Test Interpretations for N, P, K	
Parameter	Result	En	nergence				fective	Matur	ation	& Micronutrients:	
	(ppm)			Grov	vth	Fu	ll Cover				
		_	I				~			* A Very Low or Low classification indicates a high probability for obtaining a	
Nitrate-N			etiole/Le				Cro	p growth	curve	fertilizer response.	
Phosphorus			ampling				856	·•.↓		* A Moderate classification indicates a	
Potassium			evaluate a			•	GDD	•••		fertilizer response <u>may</u> or <u>may not</u> occur.	
Calcium			rient con ficiency l		• 69	96		784	•	* A High or Very High classification	
Magnesium		(Sul			GI	DD		GDD		indicates a fertilizer response is <u>not</u> likely	
Sulfur				•						to occur.	
Iron (Fe)				••	(otin o Nut		1	
Copper				443				ecting Nut Availabili		Required Tests:	
(Cu)			••	GDD				, Soil Text		* The Olsen Test is used to determine the	
Zinc (Zn)								re, Soil W		Phosphorus content	
Manganese			69	_				Salinity, pH, iture, Crop		* Potassium interpretations are based on a	
(Mn)			GDD					egumes),		water extract	
Organic	%							idues,		* A <u>saturated paste extract</u> is used for	
Matter	<u> </u>				C	I	Nutrient	Carry-ov	er	determining the ECe and pH (most crops will grow satisfactorily on soils with a pH	
						_				between 6.2 to 8.3)	
pH		ETc:	1.75"	4.32"	8.3	3"	10.28"	8.35"		between 0.2 to 0.3)	
ECe		EIC.	1.75							Other:	
(dS/m)		T		Enter I	erti	lizer	· Inputs	8			
SAR		Type:								• When the ECe (soluble salts) is less	
Sodium (Na)	ppm	Rate:	Rate:						than 2 dS/m, few salinity problems		
	Petiole/Leaf analysis is									occur	
used as a monit for determin		Form:								• The SAR evaluates potential infiltration problems. ECe, SAR & pH	
adequacy of	0	Applic	ation met	thod:						are used to categorize soils as saline,	
fertilization p		Date a	nnlied•							saline-sodic, sodic or normal (i.e., no	
	Garcia 2008	Date a	ppneu.							salinity, pH or Na problems)	


It is <u>IMPORTANT</u> to correlate Soil Fertility Test, Fertilizer Inputs & Leaf Analysis with IWM. <u>Note:</u> Follow NMSU fertilizer recommendations

			Unit	S	conversion	lbs. N	l/acre
Nitro	ogen Source	ĺ	example	your result		e.g.	your result
Soil Nitrate-Nitrogen (NO ₃ ⁻ -N):							
The amount of residual so	il nitrate-nitrogen can vary consider	ably	7 ppm		Multiply by 2.0	14.0	
1 0 11	, irrigation efficiency, fertility progra				to get lbs. N/ac.		
	ous crop. A conversion factor of 2.0 is	s used					
	oth to convert ppm N to lbs./ac.						
0	R) from the mineralization of Soil Or	rganic			Assume		
Matter (SOM):			1 % SOM		20 lbs. of N is	20.0	
	re/yr. is mineralized from each % of	SOM			mineralized/ac		
Irrigation Water Nitrate-Nitroge	· · · ·						
	und in most irrigation waters. For th	his			Multiply by 2.72		
example, 2.5 ac-ft of irriga	tion water is used.		2 ppm		to get lbs. N/ac-ft	13.6	
					(2.5 ac-ft used)		
Manure N credits for the first yea			5.0 tons/ac.		Assume 45% of		
	0 – 50% of the total weight and N co		@ 30%		the total N is		
	ry weight basis. Approximately 30 –	70%	moisture &		available during	47.25	
	to the crop during the first year.		1.5% N		the first year		
Legume N credits from previous	• •		\approx 30 lbs. of			•••	
	c. can be provided by the legume cro		N/ac. (low			30.0	
	sidue/ac. and crop quality determines	s the	crop				
amount of N made availab	ole)		residues)			104.05	
					gen per acre =	124.85	
	ns/acre; <u>N requirement:</u> 160 lbs./acr		-	-			.gov/)
Crop N Requirement (16	60.0 lbs./ac.) – Total Available N (124	4.85 lbs./	ac) = 35.15 lb	os. of N/	ac. needed as fer	tilizer	
	Fertilizer used: Urea (CC						
Cost/lb. of N:	v v			-	olit-applied in order		
\$500/ton of Urea					ended that the produ		
➤ 46% N = 920 lbs. of		L	-		monitor the effectiv		their
actual N/ton of Urea	r	nutrient	management j	program	and to modify it as	needed.	
> \$500/920 = \$0.54/lb. of N							


(NM – 4) Developing a basic Nitrogen Budget


Remember to use realistic yield goals when developing crop N requirements.



NOTE: Factors involved in IWM planning: Soil Texture, Soil Structure, Intake Family, Water Quality (salinity and SAR), Irrigation Application Efficiency evaluations, irrigation monitoring and scheduling, Irrigation System selection, consumptive use requirements, root zone depth.

(NM – 10) Phosphorus Management (Using the P Index Rating)												
	Weighting Factor (Wt. F.) x Column Factor (0, 1, 2, 4 & 8) = P Index Points											
Site	Ŀ.	None or					Very	Р				
Characteristic	Wt.F.	Very Low	Low		Medium	High	High	Index				
	A	0	1		2	4	8	Pts.				
Soil Test		V. Low	Low		Moderate	High	V. High	2.0				
P Level	1	< 8 ppm	8 - 15 ppm	2	<u>> 15 - 23 ppm</u>	> 23-30 ppm	> 30 ppm					
P (P2O5)		None						1.0				
Appl. Rate	1	Applied	<u>< 30 lbs/ac</u>	, ,	30 - 90 lbs/ac	> 90-150 lbs/ac	> 150 lbs/ac					
Organic P		None	Injected 3 - 6"		orp. Immediately	Incorporated > 3 ⁶	Surface	8.0				
Appl. Method	1	Applied	below surface	b	efore planting	mo. before planting	Applied					
P Fertilizer		None	Placed w/ Planter	Inco	orp. Immediately	Incorporated > 3 ⁷	Surface	1.0				
Appl. Method	1	Applied	Deeper than 2"	b	efore planting	mo. before planting	Applied					
Edge of Field to		V. Low	Low		Medium	High	V. High	0				
Stream/lake ¹	1.5	<u>> 1000 ft.</u>	> 500 - 1000 ft.	>	> 200 - 500 ft.	30-200 ft.	< 30 ft.					
Soil		V. Low	Low		Medium	High	V. High	1.5				
Erosion ²	1.5	< 1 t/ac	<u>1 - 3 t/ac</u>	<u>- 3 t/ac</u> >		> 5-15 t/ac	> 15 t/ac					
Runoff		Negligible						1.5				
Class ³	1.5	& V. Low	Low		Medium	High	V. High					
Irr. Erosion		Not ⁴	Tail water	QS	> 10 for erosion	QS > 10 for erodible	QS > 6 for very	3.0				
(see QS note)	1.5	Irrigated	Recovery or ⁵	1	<u>esistant soils</u>	soils	erodible soils					
Grazing		Not	Only graze	Pas	ture < 30% Dry	Pasture 30-80% Dry	Pasture 80-100%	0				
Management	0.5	Grazed	crop residue	Mat	ter as supp. feed	Matter as supp. feed						
Vegetative							No	0				
Buffer	1.5	<u>> 100 ft.</u>	> 65 - 100 ft.		20 - 65 ft.	< 20 ft.	Buffer					
Enter To	otal P Ir	ndex Points <u>:</u>	e.g., 18			w rate of water introd						
Index	P Ha	zard	P Application			row slope (ft/100 ft, %						
E Pts.	Cl	ass	Classification		Q is multiplied b	oy S: (e.g.: 5 gpm x 2%)	b = 10).					
× ÷ 0-10	V. I	Low	N Based		(1) Proximity	y of Nearest Field	<mark>(4)</mark> or No Furrow Irr	igation				
$\begin{array}{c c} 0 - 10 \\ \hline 10 - 17 \\ $	Lo)W	N Based) QS < 6 for Very erodib					
$\begin{array}{c c} Pts. \\ \hline 0 - 10 \\ \hline 10 - 17 \\ \hline 10 - 17 \\ \hline 17 - 27 \\ \hline 27 - 37 \\ \hline 37 - 47 \\ \hline \end{array}$	17-27 Med. N Based				WEPS & RUSLE	or QS < 10 for oth						
27 - 37	Hi	gh P B	ased (1.5x crop remo	val)			or Surface Application <					
Ū <u>37 - 47</u>	V. I	ligh P	Based (at crop remov	al)			-					
soil permeability class (in/hr)) (7) or Surface Applied < 3 months												
> 47 Excessive No P application allowed Son permeability class (m/m/) (7) of surface Applied < 5 months before planting Phosphorus Index Rating (Reference: NRCS Agronomy Technical Note 57) rudy garcia 2008												

					Irrigation GUID			
	Range	e of <u>Efflue</u>		<u>E:</u> Lab analysis is				
* Total pounds of I	N 20	200 300		400	500	600		ded to determine
to apply/acre/yr.	Acre-	Inches of	Effluent no	eeded to a	pply given pou	nds of Nitroge	en act	tual ppm of N in
50	1.1		0.73	0.55		0.37		effluent.
100	2.2	22	1.47	1.10	0.88	0.73	CONV	ERSIONS:
150	3.3	30	2.20	1.65	1.32	1.10		ppm = lbs/ac-ft
200	4.4	40	2.94	2.20	1.76	1.47	— or 0.227 y	x ppm = lbs/ac-in
250	5.5	51	3.67	2.75	2.20	1.84		
								= 27,157 gallons
* Actual Nitrogen app	lied should	be based o	<mark>n Effluent a</mark> r	nd Soil lab i	tests, average ann	ual crop yield ar	<mark>id NMSU re</mark>	ecommendations.
<u>Example:</u> C	orn Silag	e & Cool S	Season Gra	ss (Pastu	re) Net Irrigati	on Requireme	nts (NIR)	in inches/yr
Corn Silage		Silage	Corn S	Silage	Corn Silage Pasture,		e, Cool	Pasture, Cool
(Las Cruces, NM)	(Roswell, NM)		(Portale	s, NM)	(Clovis, NM)	(Clovis, NM) Season		Season Grass
						(Roswe	ell, NM)	(Portales, NM)
28.0	24	4.0	24.		20.0		5.0	31.4
Example Calculation:			0		Enter Your Information:			Irrigation Water
Crop: Corn Sil	age (Las		contributed by the		≻ <u>Crop:</u>			ntributed by the
Cruces, NM)			Effluent:				Eff	<u>lluent:</u>
➢ <u>NIR:</u> 28.0"			$1.65" \div 28.0" \approx 6.0\%$		> <u>NIR:</u>			
N requirement			EC of Effluent: 5.0 dS/m		N requirement:		$\succ \underline{EC}$	C of Effluent:
per acre (based		· · · · ·	0 dS/m x 0.06					
test/recommen			/m - salts in e					
Effluent Conce			EC of Irrigation Water:		Effluent Concentration:		$\succ \underline{EC}$	C of Irrigation Water:
400 mg/l of N (lab test)			2.0 dS/m (2.0 dS/m x					
Effluent needed: 1.65			4 = 1.88 dS/m		Effluent needed:			
ac-in (to get 150 lbs. N)			irrigation wa					
			tal Salt conte		\succ <u>NIR – Eff</u>	fluent needed:		tal Salt content in the
28.0" – 1.65" = 26.35" of			igation and e					igation and effluent
irrigation wate			<u>xture:</u> 1.88 +				mi	<u>xture:</u>
(plus the 1.65		2.1	8 dS/m (EC)					
in th	e effluent)							

(NM – 12) Effluent Irrigation GUIDE

NOTE: Total Salinity is based on a weighted calculation of irrigation & effluent (based on % mixture); EC = Electrical Conductivity in dS/m rudy garcia 2008