WQ - 1 – Irrigation Water Quality Sampling

Why Sample: Effects of Poor Water Quality on Soils

Irrigation water quality refers to the kind and amount of salts present in the water and their effects on crop growth and development. Soil samples as well as water quality samples must be taken to determine the quality. If levels of calcium, magnesium, and sodium, as well as chlorides, sulfates, and bicarbonates, as a group or alone, are too high, crop growth can be hurt. High levels can even cause crop failure. Often it is associated with poor soil structure.

Crop growth reductions because of dissolved substances in the soil are similar to drought-stressed effects. An osmotic gradient on salty soils is formed. Water uptake by plant roots is increasingly restricted as the concentration of soil salts increases. Because of this, as soil salts build up in the soil, more frequent irrigation is necessary to help flush out salts and reduce water stress.

A breakdown of soil structure is a major effect of elevated sodium. Soil aggregates are bonded by calcium and magnesium. High levels of dissolved sodium tend to displace these bonding elements and disperse the aggregates. As sodium increases, dispersion increases and soil tilth declines. Soil dispersion caused by sodium can make soils run together, crust easier, and can limit water infiltration.

How to Take Irrigation Water Quality Samples

Levels and specific makeup of dissolved substances in irrigation water affect crop productivity and soil structure. They also determine if water is suitable for irrigation.

Water analyses can only be as accurate as the sample taken. Contact your laboratory first to obtain the form and any specific procedures to follow. Follow these simple guidelines when collecting a water sample:

Containers and Handling

Sample early in the week to avoid having the sample sit in a lab over the weekend. Samples should be collected in a new clean, plastic bottle (at least a pint) with a screw cap. Rinse the plastic bottle and cap 3 times with the water you wish to sample to eliminate any contamination. Fill the bottle to the top and cap tightly. Wipe the bottle dry. Clearly identify each container with a simple sample identification which matches the request form for the laboratory. Tape the bottle shut so that it doesn't leak. When mailing, place bottles in a box and pack with a loose, soft packing material to prevent crushing. Avoid glass containers, as boron concentrations may change and glass has higher potential for breakage. Some samples may require overnight delivery. If the sample can't be sent immediately, refrigerate it before sending to the laboratory. Keep good records of the

date and location of each sample. This can best be done by keeping a copy of the laboratory information sheet that must be submitted with each sample.

Well Water

Let the pump operate twenty minutes to an hour before taking the sample to be sure the water is representative of what is being tested. Take the sample from water at the pump so that residues from the lines do not contaminate the sample. If two or more wells supply an irrigation system, one sample may be taken from the system after pumping (flushing) for at least one hour. However, if a water test indicates a problem, all wells supplying the system will need to be tested individually to determine the source of the problem. Sometimes one poor quality well can dramatically reduce the quality of a mixture.

Other Water Sources

Testing should also be done on irrigation water from ponds, reservoirs, streams, canals, or other surface water sources. Samples can be obtained by collecting water from a faucet near the pumping station after operating for twenty minutes or longer. For irrigation water sources where no pump is present, obtain samples by attaching a clean bottle to a pole or extension and collecting and mixing several samples into a "composite" which is sent to the laboratory. Samples from lakes, streams, or ponds should be taken below the surface for a representative sample. Where sprinkler or pivot irrigated, fill the bottle directly from the sprinkler or point of emission.

What Analyses to Request

In most cases, a routine irrigation water analysis is the most appropriate test to request for irrigation water. Regardless of laboratory selected, be certain that the analysis includes the three major factors – total soluble salts, sodium hazard (SAR) and individual potentially toxic ions. The most recommended analyses to request are:

Ammonia (for nitrogen loading) Carbonates pН R_{adi} **Bicarbonates** Chlorides Phosphorus Sodium Boron Magnesium Potassium Sulfate Calcium Nitrate nitrogen Salinity Total nitrogen Electrical Conductivity (for nitrogen loading) SAR (for nitrogen loading) Fluoride Total dissolved solids Special Analyses Processing -For microbiological analysis see instructions for specific lab.

Water Quality and Subsurface Drip Irrigation systems:

The irrigation water to be used in a drip system should be evaluated carefully to assess any potential clogging problems. Materials suspended in the water, such as sand, silt, and algae, can block emitter flow passages or settle out in the drip lines. Other contaminants, such as calcium, bicarbonate, iron, manganese, and sulfide, can also precipitate to clog emitter flow passages. All water needs to be tested to determine levels of dissolved salts, pH, and turbidity (sediment levels). Growers need to be aware of high levels of pH (7.5) and high dissolved bicarbonate levels (=> 5.6 meq/liter). If water quality analysis indicates these levels, sulfuric acid and/or gypsum should be injected to acidify the water to lower the pH to prevent the emitters from clogging with precipitates. A pH of 6.5 is favorable for injecting fertilizers or other agricultural chemicals into the system.

NM Certified Laboratories for Drinking Water Analyses – Can be Used for Irrigation

Albuquerque Water Quality	*	Albuquerque, NM	(505) 873 6249
Assaigai Aanlytical Laboratories	* +	Albuquerque, NM	(505) 345 8964
City of Carlsbad	*	Carlsbad, NM	(505) 887 1191
Diagnostic & Technology Center, Inc.	*	Alamogordo, NM	(505) 434 4944
Indepth Water Testing	*	Santa Fe, NM	(505) 471 2023
City of Farmington Env. Lab	*	Farmington, NM	(505) 599 1373
Gallup Micro Biology Lab	*	Gallup, NM	(505) 863 2001
Hall Environmental Analysis	+	Albuquerque	(505)345 3975
City of Hobbs	*	Hobbs, NM	(505) 397 9315
International Lubrication & Fuel Consultants, Inc.	*	Rio Rancho, NM	(505) 892 1666
Kramer & Associates, Inc	*	Albquerque, NM	(505) 881 0243
City of Las Vegas	*	Las Vegas, NM	(505) 454 1533
Micro Biology Lab	*	Milan, NM	(505) 287 2208
NM American Water Co.	*	Clovis, NM	(505) 763 5538
NM Water Testing Lab, Inc	*	Espanola, NM	(505) 753 6028
OMI Inc	*	Farmington, NM	(505) 325 6953
Pinnacle	+	Albuquerque	(505) 344 3777
Raton Water Works	*	Raton, NM	(505) 445 3861
Town of Red River	*	Red River, NM	(505) 754 6671
Scientific Labaratory Division/DOH	* +	Albquerque, NM	(505) 841 2510
City of Silver City	*	Silver City, NM	(505) 538 3731
SWAT Lab	* +	Las Cruces, NM	(505) 646 4422
Triangle Laboratories	dioxin	Research Triangle Park, NC	(919) 544 5729
City of Tucumcari	*	Tucumcari, NM	(505)461-4372
* for microbiology + for chemicals		Source: http://www.nmenv.state.nm.us/dwb/certified_labs.html	Updated 9/27/06

	(WQ - 4) Infigation water Samily & Soutum Ausorption Ratio (SAR) Assessment Guide												
	Irrigation Water Lab	Analysi	is for So	luble Sa	lts and S	SAR ((mg/l = m	illigrams/liter; 1	neq/l = m	illiequiva	alents/lite	r)	
	Major Cations			Ente	r Lab		N	Iajor Anioi	15			Ente	r Lab
	(ions with a positive charge)	exai	mple	Res	ults		(ions w	with a negative charge)			nple	Res	ults
		mg/l	meq/l	mg/l	meq/l			8	0 /	mg/l	meq/l	mg/l	meq/l
SS	Calcium (Ca ⁺⁺)						C	Chloride (Cl	-)				
lne	20.04 mg/meq	80	4					35.46 mg/meq	·	92	2.6		
arc	Magnesium (Mg ⁺⁺)						S	ulfate (SO4)				
H	12.16 mg/meq	14	1.2					48.03 mg/meq	,	192	4		
	Sodium (Na ⁺)					ty	Bica	rbonate (HC	CO_3)				
	22.99 mg/meq	115	5			lini		61.02 mg/meq	57	183	3		
	Potassium (K^+)					lka]	Car	bonate (CC	$()_{3}^{})$				
	39.10 mg/meq	8	0.2			A		30.01 mg/meq	5 /	6	0.2		
	Sum of Total Cations:	217	10.4				Sum	of Total An	473	9.8			
Total Dissolved Solids (i.e., Soluble Salts) is: $217 \text{ mg/l} + 473 \text{ mg/l} = 690 \text{ mg/l}$ (or 690 ppm). 0.23 x								TDS (p	pm) = lbs	s. of salt	ts/ac-in		
690	$mg/l \div 640 \approx ECiw \text{ of } 1.1 \text{ dS/m}$	(i.e., El	ectrical	Conduc	tivity of	Irrig	ation Wa	ater in decisien	nens/met	er)			
			Ir	rigation	Water S	Salini	ity Assess	sment					
Sal	inity (Soluble Salts): affects	s crop v	water av	vailabil	ity			Degree of	Restrict	ion on	Use – E	Ciw (d	lS/m)
Not	e: Be sure to compare the Ir	rigation	n Salini	ty (ECi	w) with the Soil None Sligh			ight to Moderate			vere		
Tes	t (ECe), in order to evaluate	the po	tential y	vield re	duction of your								
cro	o (i.e., Refer to a Crop Three	shold S	oil Sali	nity (E	Ce(ct)) Table) < 0.7				0.7 - 3.	0	>	> 3.0	
		Irrigati	ion Wate	er Quali	ty and it	ts pot	ential eff	ects on Infiltra	ation				
The	amount of <u>Sodium</u> and <u>sol</u>	uble sa	l lts in th	ne				Degree of 1	Restrict	ion on	Use – E	Ciw (d	lS/m)
Irrig	gation Water affects the rate	of wat	er infilt	ration		SAI	R	None	Slight	nt to Moderate		Se	vere
into the soil. This is evaluated using the SAR					0 – 3	3	> 0.7		0.7 - 0.	2	<	0.2	
(So	dium Adsorption Ratio) an	nd Elec	trical			3 - (6	> 1.2		1.2 - 0.	3	<	0.3
Cor	ductivity of the Irrigation W	Vater (E	ECiw in	dS/m).		6 – 1	2	> 1.9		1.9 - 0.5		<	0.5
	Use meq/l for calculat	ing the	SAR		1	12 - 2	20	> 2.9		2.9 – 1.	3	<	1.3
	$\mathbf{SAR} = \mathbf{Na}/\sqrt{\mathbf{Ca}}$	+ Mg)/2	2		20 - 40		> 5.0		5.0 - 2.9		<	2.9	

(WQ – 4) Irrigation Water Salinity & Sodium Adsorption Ratio (SAR) Assessment Guide

Rudy Garcia 2008

	(WQ – 5) Water Quality Infiltration Assessment Guide												
	S	AR			Infiltration Assessment								
ECiw (dS/m)	High Ca Low Na	High Na Low Ca	High Ca Low Na Low HCO2	High Ca Low Na High HCO2	High Na Low Ca Low HCO3	High Na Low Ca High HCO2	h Na W Ca HCOa		infiltration rate of water into I. Evaluated using ECiw & R or adj.RNa together)				
			2011 11003				SAK Or	Degree	ECiw (dS/m)	on CDL			
0.5	0.71	4.0	0.64	0.9	3.2	4.3	adj.RN	a None	Slight to Moderate	Severe			
1.0	1.0	5.7	1.2	1.6	5.7	7.2	0 – 3	>0.7	0.7 - 0.2	<0.2			
2.0	1.41	8.1	2.1	2.8	9.7	11.5	3 – 6	>1.2	1.2 – 0.3	<0.3			
3.0	1.73	9.9	3.0	3.7	13.1	14.8	6 - 12	>1.9	1.9 – 0.5	<0.5			
4.0	2.0	11.4	3.7	4.5	15.6	17.6	12 – 2	0 >2.9	2.9 – 1.3	<1.3			
ECiw =Ele adj.RNa = which is no	ectrical Co adjusted 1 o longer ro	onductivity Residual So ecommende	of irrigation w dium (the adj d)	ater; SAR = S .RNa replaces	Sodium Adsor the older adj	ption Ratio; .SAR method	20 - 4	0 >5.0	5.0 – 2.9	<2.9			
Potentia	al Redu ECiw (ction in (Soil Typ	Infiltration e determin	n due to SA nes degree	AR (or adj. of problen	RNa) and n)	<u>NOTE:</u> were bas concent	the SAR and sed on the fo rations:	adj.RNa calcu llowing	ilations			
Least aff	ected	<mark></mark>	Moderately	affected	M	ost affected	High Ca	= 70% of m	eq./l of cations				
Coar	se	Moderat Coarse	ely Med	lium M	oderately Fine	Fine	Low Na = 20% of meq./l of cations Low HCO3 = 20% of meq./l of anions						
Sands, fine V. fine San Loamy San	e Sands, nds, nds,	Sandy Loa	um, Sandy Los	y fine Sa Loam, am, S	andy Clay Loam, Silty Clay	Sandy Clay, Silty Clay, Clay	Low Ca High Na High H(Magnesi	= 20% of m = 70% of m CO3 = 70% (um was ken	eq./l of cations eq./l of cations of meq./l of ani t at 10% of me	ons a /l of			
Loamy F. S LoamyV. I	Sands, F. Sand	line Sanc	iy Silt I Si	loam, ilt C	Loam, lay Loam		cations	Magnesium was kept at 10% of meq./l of cations Rudy Garcia 20					

Crop Salt Tolerances

Crop (name)	Yield	loss 0%	Yield Io	ss 10%	Yield Io	ss 25%	Yield lo	ss 50%	Maximum
	ECe ¹	ECw ²	ECe ³						
Alfalfa	2.0	1.3	3.4	2.2	5.4	3.6	8.8	5.9	15.5
Almond	1.5	1.0	2.0	1.4	2.8	1.9	4.1	2.7	7.0
Apple	1.7	1.0	2.3	1.6	3.3	2.2	4.8	3.2	8.0
Apricot	1.6	1.1	2.0	1.3	2.6	1.8	3.7	2.5	6.0
Barley	8.0	5.3	10.0	6.7	13.0	8.7	18.0	12.0	28.0
Beans	1.0	0.7	1.5	1.0	2.3	1.5	3.6	24	6.5
Beets	4.0	27	5.1	3.4	6.8	4.5	9.6	6.4	15.0
Bermuda Grass	6.9	4.6	8.5	57	10.8	7.2	14 7	9.8	22.5
Blackberry	1.5	1.0	2.0	13	2.6	1.8	3.8	2.5	6.0
Boysenberry	1.5	1.0	2.0	1.0	2.0	1.0	3.8	2.5	6.0
Broccoli	2.8	1.0	2.0	2.6	5.5	3.7	8.2	5.5	13.5
Cabbage	2.0	1.9	2.9	2.0	J.J 4 4	20	7.0	J.J 1 6	12.0
Captaloupo	2.2	1.2	2.0	1.9	4.4 5.7	2.9	0.1	4.0 6.1	12.0
Carret	2.2	0.7	3.0	2.4 1 1	5.7	3.0	9.1	2.1	10.0
Clavor	1.0	0.7	1.7	1.1	2.0	1.9	4.0	0.1 20	0.0 10.0
	1.5	1,0	2.3	1.0	3.0	2.4	5.7	<u> </u>	10.0
Corn, Grain & Sliage	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10.0
Corn Sliage	1.8	1.2	3.2	2.1	5.2	3.5	8.6	5.7	15.5
Corn, Sweet	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10.0
Cotton	1.1	5.1	9.6	6.4	13.0	8.4	17.0	12.0	27.0
	2.5	1./	3.3	2.2	4.4	2.9	6.3	4.2	10.0
Fescue, Tall	3.9	2.6	5.8	3.9	8.6	5.7	13.3	8.9	23.0
Grape	1.5	1.0	2.5	1.7	4.1	2.7	6.7	4.5	12.0
Lettuce	1.3	0.9	2.1	1.4	3.2	2.1	5.2	3.4	9.0
Love Grass	2.0	1.3	3.2	2.1	5.0	3.3	8.0	5.3	14.0
Meadow Foxtail	1.5	1.0	2.5	1.7	4.1	2.7	6.7	4.6	12.0
Onion	1.2	0.8	1.8	1.2	2.8	1.8	4.3	2.9	7.5
Orchard Grass	1.5	1.0	3.1	2.1	5.5	3.7	9.6	6.4	17.5
Peach	1.7	1.0	2.2	1.4	2.9	1.9	4.1	2.7	6.5
Pear	1.7	1.0	2.3	1.6	3.3	2.2	4.8	3.2	8.0
Pecan [⁺]	1.9	1.3**	2.4*	1.6**	3.2*	2.4**	4.6	3.0**	8.0*
Pepper	1.5	1.0	2.2	1.5	3.3	2.2	5.1	3.4	8.5
Potato, Irish	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10.0
Potato, Sweet	1.5	1.0	2.4	1.6	3.8	2.5	6.0	4.0	10.5
Radish	1.2	0.8	2.0	1.3	3.1	2.1	5.0	3.4	9.0
Raspberry	1.0	0.7	1.4	1.0	2.1	1.4	3.2	2.1	5.5
Ryegrass, Perennial	5.6	3.7	6.9	4.6	8.9	5.9	12.2	8.1	19.0
Safflower	5.3	3.5	6.2	4.1	7.6	5.0	9.9	6.6	14.5
Soybean	5.0	3.3	5.5	3.7	6.2	4.2	7.5	5.0	10.0
Spinach	2.0	1.3	3.3	2.2	5.3	3.5	8.6	5.7	15.0
Strawberry	1.0	0.7	1.3	0.9	1.8	1.2	2.5	1.7	4.0
Sudan Grass	2.8	1.9	5.1	3.4	8.6	5.7	14.4	9.6	26.0
Sugar Beet	7.0	4.7	8.7	5.8	11.0	7.5	15.0	10.0	24.0
Tomato	2.5	1.7	3.5	2.3	5.0	3.4	7.6	5.0	12.5
Trefoil, Big	2.3	1.5	2.8	1.9	3.6	2.4	4.9	3.3	7.5
Trefoil, Birdsfoot	5.0	3.3	6.0	4.0	7.5	5.0	10.0	6.7	15.0
Vetch	3.0	2.0	3.9	2.6	5.3	3.5	7.6	5.0	12.0
Wheat	6.0	4.0	7.4	4.9	9.5	6.4	13.0	8.7	20.0
Wheatgrass, Crested	3.5	2.3	6.0	4.0	9.8	6.5	16.0	11.0	28.5
Wheatgrass, Fairway	7.5	5.0	9.0	6.0	11.0	7.4	15.0	9.8	22.0
Wheatgrass. Tall	7.5	5.0	9.9	6.6	13.3	9.0	19.4	13.0	31.5
Wild Rye, beardless	2.7	1.8	4.4	2.9	6.9	4.6	11.0	7.4	19.5

¹ ECe is the electrical conductivity of saturated soil extract, reported in millimhos per centimeter at 25°C.

² ECw is the electrical conductivity of the irrigation water, reported in millimhos per centimeter at 25°C.

 ³ Maximum ECe is the conductivity of saturated soil extract, reported in millimhos per centimeter at 25°C, at which the plant dies.
⁴ Complete data is not currently available for pecans. The * is an interpolation between the 0% and 50% range. The ** for ECw is calculated as ECe x 0.67, which is a general rule of thumb for these ratios under average conditions. RDFischer 2/09

(WQ – 7) Salmity Assessment GUIDE for Selected Crops														
			% Yield	Irr	igatio	n ECiv	w (dS/	(m)		Irri	gation	n ECiv	w (dS/	′m)
	ce	*ECe _(ct)	Reduction	0.5	1.0	2.0	3.0	4.0		0.5	1.0	2.0	3.0	4.0
	lt an	Crop	per unit	Soil	ECe	will co	oncent	trate		% L	eachii	ng Fra	ction	(LF)
CROP	Sa ler	Threshold	increase	abo	out 1.5	5 x the	ECiw	/ in		for c	onver	ntiona	l irriga	ation
		(dS/m)	above	au	the to	n root	zone			I	$E_{\rm c} - E$		/FCiv	X 7
		(us/m)	FCo			<u>1100</u>				***	TE_	$\Lambda 200$, 1.702
				**	% Y1	eld R	educti	on			LF =	0.300	0/FC	
Barley	Т	8.0	5.0	0	0	0	0	0		0.3	1	3	6	10
Cotton	Т	7.7	5.2	0	0	0	0	0		0.3	1	3	6	10
Bermuda														
Grass	Т	6.9	6.4	0	0	0	0	0		0.4	1	4	8	12
Triticale	т	61	25	0	0	0	0	0		04	1	5	9	15
Inticult	-	0.1	2.3	0	0	0	0	0	-	0.1	1	5		15
Sanahum	MT	69	16	0	0	0	0	0		0.4	1	4	0	12
Sorgnum	IVII	0.0	10	0	0	0	0	0	-	0.4	1	4	0	15
			F - C		0	0		0		0.5	~	_	10	10
Oats	MT	6.0	5.6	0	0	0	0	0		0.5	2	5	10	16
Wheat														
Common	MT	6.0	7.1	0	0	0	0	0		0.5	2	5	10	16
Tall														
Fescue	MT	3.9	5.3	0	0	0	3	11		1	3	10	20	32
Peanut	MS	3.2	29.0	0	0	0	38	81		1	4	14	28	45
				-	-	-								
Tomato	MS	2.5	9 9	0	0	5	20	35		2	7	21	42	>50
	IVIS	2.5).)	0	0	5	20	55		2	/	21	+2	
A 10, 10,	MC	2.0	7.2	0	0	7	10	20		2	10	21	>50	>50
Allalla	MS	2.0	1.5	0	0	/	18	29		3	10	51		
													> 50	> 50
Pecan	MS	1.9	16.6	0	0	18	43	68		3	10	34	>30	>30
Corn													50	50
Grain	MS	1.7	12.0	0	0	16	34	52		4	13	41	>50	>50
Strawberry														
Clover	MS	1.5	12.0	0	0	18	36	54		5	16	>50	>50	>50
Pepper	MS	1.5	14.0	0	0	21	42	63		5	16	>50	>50	>50
Lettuce	MS	13	13.0	0	3	22	42	61		6	20	>50	>50	>50
Lettuce		1.5	15.0	0	5		+2	01		0	20			
Decel	C	17	21.0	0	0	27	50	00		4	12	41	>50	>50
reach	5	1./	21.0	0	0	21	39	90		4	13	41		
	~										•	>50	>50	>50
Apple	S	1.3	17.5	0	4	30	56	82		6	20	>30	>30	>30
												-		
Onion	S	1.2	16.0	0	5	29	53	77		7	23	>50	>50	>50
Green														
Bean	S	1.0	19.0	0	10	38	67	95		10	31	>50	>50	>50
*ECe _(et) is th	e Crop	Threshold So	oil Salinity. It	is the	maxi	mum	mean	root		**	* % I	F nee	eds to	be
zone soil sali	nity at	which vield r	eductions wi	ll not	occur	**Du	le to m	nanv		eva	luated	l with	actua	1%
variables of	overnin	g salt halance	e the calculat	ted va	lues a	re an 4	estima	te		Irr	igatio	n effi	rienci	es
variables g	overmin	S sur Dalance	e, ine carcula	icu va	iucs a		Journa			111	15000	n viin	cienci	00.

Rudy Garcia 2008

Irrigation water quality guidelines ¹											
Potential irrigation water	0 1	Degree	of restriction	of restriction on use							
quality problem	Parameter	None	Slight to	Severe							
			moderate								
	ECiw (mmho/cm)	< 0.7	0.7 – 3.0	>3.0							
Salinity											
(affects crop water availability)	or TDS (mg/l)	< 450	450 - 2.000	> 2.000							
	SAR	E	Ciw (mmho/cm)							
Infiltration	0 - 3	> 0.7	0.7 – 0.2	< 0.2							
(affects water infiltration rate,	3 - 6	> 1.2	1.2 - 0.3	< 0.3							
evaluated by using ECiw and	6 – 12	> 1.9	1.9 – 0.5	< 0.5							
SAR together)	12 - 20	> 2.9	2.9 – 1.3	< 1.3							
	20 - 40	> 5.0	5.0 - 2.9	< 2.9							
Specific ion toxicity											
(affects sensitive crops)											
(Na ⁺) surface irrigation	SARadj	< 3	3 - 9	> 9							
sprinkler irrigation	meq/l	< 3	> 3								
(CL) surface irrigation	mea/l	< 4	4 – 10	> 10							
sprinkler irrigation	meq/l	< 3		2 10							
sprinkier migation	meq/1		20								
Boron (B)	ppm/l	< 0.7	0.7 - 3.0	> 3.0							
(HCO ₃ ⁻) Bicarbonate											
(overhead sprinkler only)	meq/l	< 1.5	1.5 – 8.5	> 8.5							
Plugging potenti	al from irrigation water i	ised in micro irr	igation systems	5							
PROBLEM	LOW	MEDIUM	SE	VERE							
Physical											
Suspended solids (ppm)	< 50	50 - 100	>	100							
Chemical											
pH	< 7.0	7.0 - 8.0	>	>8.0							
TDS (ppm)	< 500	500 - 2,000	>	2000							
Manganese (ppm)	< 0.1	0.1 – 1.5	>	-1.5							
Iron (ppm)	< 0.1	0.1 – 1.5	>	>1.5							
Hydrogen sulfide (ppm)	< 0.5	0.5 - 2.0	>	-2.0							
Biological											
Bacteria pop. (no./ml)	< 10,000	10,000 - 50,000	> 50,000								

¹Adapted from Western Fertilizer Handbook, 2002, Ninth edition, California Plant Health Association, Interstate Publishers, Inc., Danville, Illinois.

NOTE: If you're not sure of the benefits of gypsum or elemental sulfur, then demonstrate on a small portion of a field & evaluate results.															
													ıt		
Sail	0% [™] [™] Soil Inches								Restriction on Use						
5011	Clay	R.	ral	Bulk			Applied	1		SAR	Units: ECiw (dS/m)				
Texture	Clay	EC nec	tter	Density	Soils							Slight to			
		U E	& m Ma	(g/cm [°])	Intake	1.0	2.0	3.0			None	Mod.	Severe		
Sands	2 – 8	2-6	ay a nic	1.65	Family	In	filtrati	on		0 – 3	> 0.7	0.7 - 0.2	< 0.2		
Loamy Sands	2 – 14		rga	1.6		Ti	ime (Hı	rs)							
Fine Sands			% 0 0		0.1					3 - 6	> 1.2	1.2 - 0.3	< 0.3		
Very Fine Sands	2 – 8		10 p % %	1.65		2.8	10.5	22.3			_				
Loamy Fine Sands			ase e) <i>ह</i>		0.3	10		60		6 – 12	> 1.9	1.9 – 0.5	< 0.5		
Loamy Very F. Sands	2 – 14		is be	1.6		1.0	3.5	6.8			• •				
Sandy Loam	2 10	2.0	C) i		0.5	0.63	2.0	20		12 - 20	> 2.9	2.9 – 1.3	< 1.3		
Fine Sandy Loam	2 - 10	3-8	DO CE	1.56	0.75	0.05	2.0	5.0	-	20 40	> 5.0	50.20	.20		
Very F. Sandy Loam	10 26	7 – 15	ty (1.55	0.75	0.48	1.5	2.8		20 - 40	> 5.0	5.0 - 2.9	< 2.9		
Silt Loam	10 - 20 2 - 26		aci, M	1.42	1.0		110		-						
Silt	2 - 20	10 – 19	Cap	1.40	1.0	0.33	1.0	1.8	-	Coll Ctrue		Down	vord		
Sandy Clay Loam	2 - 10 22 - 36		ge (1.4/	1 25					Soll Structure		Downwaru Movement of water			
Silty Clay Loam			han Ka	1.27	1.20	0.28	0.8	1.5	F	Single G	ain	Wovement of water			
Clay Loam	28 - 38		Exc] e.g.	1.32	1.5					Granul	ar	Rap	id		
Sandy Clay	38 - 54		H U	1.33		0.23	0.7	1.3		Block	y				
Silty Clay	42 - 58	15 30	atic	1.23	1.75					Prisma	tic	Mode	rate		
Clay	42 - 98	13 - 50	C	1.25		0.20	0.6	1.1		Platy					
										Massiv	re 🛛	Slov	N		
constant x so	oil x b	oulk x	CEC	x (initial	SAR – fina	al SAR)	x m	nultiplicat	tio	n ÷ gy	osum ÷	-2000 = g	ypsum		
dej	pth de	ensity						factor		р	ırity	re	quirement		
(23.1) x (fe	et) x (g	/cm ³) x ((meq/100) g) x (initia	ll SAR – fin	al SAR)	X	(1.25)		÷ (0	∕₀) ÷	(2000) = (1)	tons/ac)		
Gypsum	23	.1 x 0.5 f	ft x 1.3	34 g/cm ³ x 14	.0 meq/100	g x (13	(3-6) x	1.25 ÷	0	$0.80 \div 2000$) = 1.2	tons of Gypsu	m/ac		
Example															
Sulfur		1.3 (tons/ac o	f pure gypsum	needed x <mark>0</mark>	$19^{\circ} = 0.$.25 tons of	of Element	tal	Sulfur/ac ne	eded (or 4	494 lbs./ac)			
Example															
Considerations in the	e use of so	il amendn	nents: S	oils Intake Fa	amily, Wat	ter Qua	lity (EC	iw & SAl	R)	, Soil Struct	ure, Stra	atified Soils, I	rrigation		
Water Management,	Water Management, crop rotations (residue management), leaching requirement, tillage operations (i.e., Soil Conditioning Index (SCI) and														
Soil Tillage Intensity	Rating (S	TIR)), %	Soil Or	ganic Matter	, etc. Imp	ortant:	Are Soil	ls charact	ter	rized as Salin	ie, Salin	e-Sodic or So	dic.		

(WQ – 9)Gypsum (CaSO₄·2H₂O) & Elemental Sulfur (S⁰) Soil Amendment GUIDE

*Use 0.19 to convert an equivalent amount of pure gypsum into an S⁰ requirement (Ref. NRCS Salinity Mgmt. for Soil & Water – pg. 5.42). rudy garcia 2008