

Components of Soil Organic Matter

Living Fresh organisms residue <5% <10%

Stabilized organic matter (humus) 33% - 50%

Decomposing organic matter (active fraction) 33% - 50%

Photos taken from the NRCS Soil Quality Institute website Source: Soil Biology Primer

Soil Biology and the Landscape

Rhizosphere

Typical Numbers of Soil Organisms in Healthy Ecosystems

	Ag Land	Prairie	Forest			
	Organis	ms per gram (teaspo	on) of soil			
Bacteria	100 mil1 bil.	100 mil1 bil.	100 mil1 bil.			
Fungi	Several yards	10s – 100's of yds	1-40 miles (in conifers)			
Protozoa	1000's	1000's	100,000's			
Nematodes	10-20	10's – 100's	100's			
	Or	ganisms per square	foot			
Arthropods	< 100	500-2000	10,000-25,000			
Earthworms	5-30	10-50	10-50 (0 in conifers)			

Microbial Biomass with Depth

Seasonal Microbial Activity

Complexity of the Soil Food Web in Several Ecosystems

Mineralization and Immobilization

Organic nutrients are stored in soil organisms and organic matter. Bacteria with fluorescent stain for counting

Nitrogen-fixing Bacteria

Actinomycetes (decomposers)

Nodules formed where *Rhizobium* bacteria infected soybean roots.

Bacterial cells that grow like fungal hyphae

Mushrooms:The fruiting body of some fungi

- Decompose carbon compounds
- Improve OM accumulation
- Retain nutrients in the soil
- Bind soil particles
- Food for the rest of the food web
- Mycorrhizal fungi

Mycorrhizae

Fungal hyphae

Mycorrhizal structure

Ectomycorrhizae

Mycorrhizal Fungi

Arbuscular Mycorrhizae (AM)

Springtails (fungal feeders)

- Abundant in many soils.
- Feed on some disease-causing fungi.
- Jump by slamming their tail down.

PROTOZOA

Ciliate

Flagellate

Soil-Dwelling "Vampires" (amoebae that eat fungi)

Amoebae

NEMATODES

Lesion-Feeding Nematode

Predatory Nematode

Bacterial-Feeding Nematode

Root-Feeding Nematode

Fungal-Feeding Nematode

Herbivores

(Symphylan)

Mites shredding a leaf

FOOD WEB & SOIL HEALTH

(Predatory Mite)

Mites and Biodiversity

Shredders: millipedes

Predators: Pseudoscorpions

Wolf Spider

Centipedes

EARTHWORMS

Earthworm burrow

Vertical burrows

Earthworms bury litter

Earthworm casts

(SQ – 7) Soil Quality Considerations [*] : i.e., is it <u>Aggrading, Sustaining</u> or <u>Degrading</u>																
Assessing Soil Quality &	_		Salinity Soil			Aggregate			RUSLE2							
Soil Health is a function of	So	oil	Class	Micro-	Respira-	D2- ay		Stab	oility		Soi	l	_			
many complex interactions,	g	H	(dS/m)	bial tion		CC S/di	<) (>		(> 0.25 mm)		Tillage		Soil			
inputs and management			-	Response		Response At optimum temp. &	At .sq					Intensity		Conditioning		
factors such as :	ly ne	9 0	EC _{1:1}	EC _{1:1}			temp. &	L] C					Rati	ng	Ind	ex (SC
Climata	ong alii	7.0			moisture			tes		tes					<i></i>)	
 Crons & Yield (i.e., 	itre MIk		ngly line .07	Strongly Saline > 6.07 Few halophilic organisms are active	Unus- Upilic Upilic Upilic Upilic	> 64	nic Matter	able Aggrega		grega	isturbing iction).					
biomass produced)	7. S													OM	M	
Soil type		8.5	tro Sal > 6		E c a c a c a c a c a c a c a c a c a c				ay	Age (oil (il C	
Water Quality/Supply	ntly line		\mathbf{N}						Ū	able				S	S S	
Irrigation Water	ligł kal	8.0	ly 7	t	·	t rga	Sta	%	Sta	il d apa	u	6	asin	nin		
Tillage Operations	S. A		ate) 1e 6.0'	erai bes mi-	Ideal	- 6	Ō	iter		iter	so Con	osio	K 0.	cre	<u>sclin</u>	
 Fertilizer & Pest 	_	7.5	lera alir (– (Moder: Salir 3.16 – (Salt tole micro predoi nati	lio2 Index of the state	Soil S		%	Wa	% Wa	% Wa) & its te & (oil erc	R,	in	e <u>de</u>
Management	tral		10d S 8.16		Activity			%	E					ave	lave	
Crop Rotations	eut	7.0	N C			2				illage) Aerat	d s	+	o h	o h		
Residue Management	Z		ightly ightly aline 1 – 3.16 Aajor crobial ocesses urenced	Med.	3						ace	0.4	ed t	ed 1		
Soil Amendments: Monune mulch		6.5		nuy ne 3.1 3.1 bial ssess	S S S S S S S S S S S S S S S S S S S	16.	12	85	80	86	s (t ter,	edı) X	licte	lict	
effluent, gypsum, etc.	od. id			igh alii 1 -	ligh alii 1 –	Aaj cro oce	Activity						ion	1	FC	red
Cover crops	M	6.0	SI S 1.7	N mi pr infi	Mod.	9]	8	81	60	82	rat , Sł	les	+	is p	is p	
					LOW Soil	, , , , , , , , , , , , , , , , , , ,					pe lift	alu	.4	ma	em	
Carbon Cycling	A	5.5	ly 1		Activity	9.5	4	77	40	78	d () x, I	Rv	x (yste	yst	
	ngl.	= 0	ght ine 1.7	cted obia esse cted	Vorm		•		20		'iel Mix	IT	M	le s	he s	
Riological		5.0	Sli Sal 98-	ele icre roc	Low	N	2	75	30	74	n F rt,]	er S	\bigcup), tł), tl	
Diological	v St cid	15	V. 0.9	a D S	Soil	.6	1 0	70	20	70	d o Ive	9WC	Ë	(+)	-) si	
	ery A	4.5			Activity	V	1.4	/0	20	/0	ase (Ir	Γ	S	lg is	ng	
			d ms	p d			0.8	66	10	65	s b ons			atin	rati	
Physical Chemical	g a	4.0	Sal 0.9	ew mis ecte	No Soil		0.0	UU	10	03	R i ctic			e r	he I	
	¶tr. \ci	35	- (F rga affe	Activity	0	04	53	5	60	a			f th	If t	
	C V	5.5	Ž	0			U.T	55	5	00				Ι		
IMPORTANTIIL Use the Farm Record Form (Case Study) guide to assist in evaluating Soil OM = Organic Matter																
Ouality Trends: i.e., is Soil Ouality Aggrading, Sustaining or Declining with current cropping system FO = Field Operations																
ER = Soil Erosion																

(*<u>References:</u> NRCS Soil Quality Test Kit Guide & Soil Quality Guide: Assessment & Applications for Field Staff) rudy garcia 2008

SQ – 8a. Benefits of Conservation Tillage					
Environmental:	Economic:				
• Reduces soil erosion from both water and wind (90% erosion reduction can be expected when using a no-till instead of intensive tillage system).	• Yields are good, if not better, than reduced or intensive tillage system when managed properly.				
• Increases organic matter (each tillage trip oxidizes some organic matter; research shows continuous no- till can increase organic matter in the top 2 inches of soil about 0.1% each year).	 Optimizes soil moisture (improved infiltration and increased organic matter are especially important on droughty soils and may help the crop through a persistent dry period. Tillage reduces available moisture by about ¹/₂" per trip). 				
• Improves water quality (when combined with irrigation water management, crop nutrient management, integrated pest management, conservation crop rotation, in integrated system, conservation tillage plays an important role in improving both runoff to streams, rivers, and lakes	• Saves time (On a 1000 acre farm, an additional 100 hours are needed for every pass (example based on 18' disk, 160 hp FWD). Many growers take advantage of the time savings by exploring other "opportunities").				
as well as water that finds its way into aquifers).	• Reduces fuel consumption (no-till can reduce fuel use by 3.5 gallons/acre compared to intensive tillage).				
• Improves wildlife habitat (the crop's residue provides food and shelter. In addition, if combined with other needed habitat, such as grassy cover and woody areas, wildlife may increase significantly).	• Reduces overall production costs (NMSU reports that irrigated wheat yields in Clovis are comparable between conventional and conservation tillage, but				

• Other benefits include reduced soil compaction, utilization of marginal land, some harvesting advantages, and conservation compliance.

1

production costs for conservation tillage are lower by

fewer pieces need to be replaced. Economists report

• Reduces machinery wear (less machinery means

this amounts to a \$5/acre reduction in costs).

as much as \$50 per acre).

Conservation Tillage and Crop Residue Management

Integrated IWM Field Handbook SQ-8b

What is Residue Management/Conservation Tillage

•Any tillage or planting system that maintains at least 30% crop residue cover on soil surface (leaves about a third of soil covered after planting).

Residue Management, Mulch-Till

This full-width tillage system usually only includes one or two tillage passes.

Yet after planting, at least a third of the surface remains covered with residue.

Residue Management, No-Till & Strip-Till

•No-till: Leaving the residue from last year's crop undisturbed until planting

•Strip-till: No more than a third of the row width is disturbed with a coulter or specialized shank that creates a strip. If shanks used, nutrients injected at same time.

Why Use a Conservation Tillage System? Environment:

1. Reduce sheet and rill erosion.

2. Reduce wind erosion.

Residue Cover, % on Any Day	Erosion Reduction, % While Residue is Present		
10	30		
20	50		
30	65		
40	75		
50	83		
60	88		
70	91		
80	94		

Why Use a Conservation Tillage System? Environment:

3. Maintain or improve soil organic matter content and tilth.

- Each tillage trip oxidizes some organic matter
- Continuous no-till can increase organic matter in top 2 inches of soil about 0.1% each year.

Why Us	e a Conservation				
Tillage Sys	stem? Environment:				
4. Conserve soil moisture. (Improved infiltration and increased organic matter; tillage reduces available moisture by about 1/2" per trip)					
Residue reduces eva	aporation:				
Surface Cover %	Relative Potential Evaporation				
0	1.00				
10	0.90				
20	0.78				
30	0.70				
40	0.67				
80	0.58				

Why Use a Conservation Tillage System? Environment:

 5. Manage snow to increase plant available moisture.
 6. Improves water quality
 7. Provide food and escape cover for wildlife.

Why Use a Conservation Tillage System Deconomic:

 Yields - are as good, if not better
 Saves time and labor
 On a 1000-acre farm, an additional 100 hours needed for every pass (example based on 18 disk, 160 Hp FVD)
Why Use a Conservation fillage System? Economic:

Reduces fuel consumption
 No-till can reduce fuel use by 3.5 gal/ac

 Reduces machinery wear
 Less machinery means fewer pieces need to be replaced. Up to a \$14/acre cost reduction

Differences in residue cover between Conservation Tillage practices

- No-till leaves the most surface residue
 - With high residue crops, e.g. corn, wheat, sorghum, 75 % +
 - With low residue crops, e.g. soybeans, cotton, residue cover is significantly less
 - a cover crop may be needed to meet residue goals
 - In some climates, some residue cover may carry over from year to year

Winter annuals also add to surface residue

Differences in residue cover between practices, continued:

- Mulch-till residue levels can be significantly less than no-till
- With high residue crops, 30-50 % possible
- With low residue crops, difficult to retain 30 percent
- May need cover crop to achieve residue goals

Management of Residue

- Surface residue must be evenly distributed
- Residue decomposes with time
- If target is 40 percent cover after planting, will need more over winter
- May need to control winter weeds in dryland areas to help conserve soil moisture in spring

Management of Crop Residue, continued:

- Crop residue and moisture level impacts soil temperature less variation
- Under no-till, soil temperatures will be cooler
 - May be critical in cool, wet springs
 - May be justification for strip-till
- Less extremes in soil temperature under no-till may result in increased root growth and improved soil biological activity

Residue Management - Irrigation

Surface residue

- slows flow especially with furrow
- increases opportunity time, water holding capacity, random roughness (structure)
- decreases surface evaporation
- cools seedbed temperature

Residue Management - Irrigation

- More difficult small seeded vegetables
- More requirements for incorporation of pesticides
- Management techniques may need modification
 - especially with furrow irrigation.

Potential Problems from Residue

- Residue may float off of field
- Accumulate in fence rows and road ditches
- If not evenly distributed can cause planting/weed problems
- May have cool, wet soils at planting

Low Residue Crops (i.e., Vegetables)

- Residue orientation and row orientation become more important
- Leave as much residue standing as possible
- Orient rows perpendicular to prevailing wind direction

Benefits of Increasing Organic Matter

- Soil aggregate stability increases
- Plant available water increases
- Cation exchange capacity of soil increases

Crop Residue and Microorganisms

- Provides an energy source for microorganisms
- As surface residue increases, microorganisms increase
- Through their life processes, they return humus to the soil
- When residue is plowed under, residue is rapidly consumed and microorganism processes end

Crop Residue and Microorganisms, continued:

- Microorganisms utilize surface residue slowly, remain active for longer periods, and significantly improve soil humus
- When soils are tilled, it is similar to stirring a fire.
- Argentina cropping systems "aggression" (years of tillage) vs. "recuperation" (years of no-till)
- C0₂ is one of the greenhouse gases

Microorganisms can tie-up Nitrogen, continued:

- Microorganisms utilize N during decomposition process
- N is temporally tied-up, but released during growing season
- Under no-till systems, N release is more evenly distributed during growing season compared to conventional systems.
- No-till systems do not have typical flush of N released as in conventional systems

Soil Properties - Soil Structure

 Surface soil becomes more granular and friable with continuous residue management systems

 Extent of change is dependent on the residue management practice used, climate, and soil

Soil Properties - Soil Structure, continued:

 Changes apparent in about 3-5 years with no-till/strip-till and ridge-till

• Type of soil and climate strongly influence the rate of this change

Expected Changes in Soil Structure with Residue Mgt. Systems

- Improved soil aggregate stability
- Improved water holding capacity
- Increased granular structure at the surface
- Less surface ponding of rainfall

Soil Properties - Infiltration

- Major benefit from Residue Mgt.
- No-till/Strip-till and Ridge-Till
 - improved soil structure
 - slowed runoff
 - leaves old root and macropore structure undisturbed
 - fastest way to improve soil quality

Soil Properties - Infiltration, continued:

Mulch-Till

- full width tillage disturbs macropores
- slows runoff due to increased surface roughness
- chisel can break-up shallow compaction layers

Role of Macropores

- Develop from decayed root channels and earthworms
- If open to the surface infiltration may be significantly increased
- May be direct conduit for contaminants
- Full-width tillage disturbs macropores to depth of tillage

Soil Properties - Compaction

Compaction created by tillage and vehicle traffic can be corrected

 Other compacted layers occur naturally and may or may not be correctable

Soil Properties - Crusting

- Serious concern in soils low in organic matter, like NM
- More prevalent on soils excessively tilled
- Can interfere with crop emergence
- May require operation to break crust

Soil Properties - Crusting, continued:

- Residue mgt. Practices can reduce crusting - especially no-till
 - Surface residue absorbs impact of falling raindrops
 - -Organic matter is increased
 - -Improved aggregate stability

Water Quality - Sediment

- Sediment is number 1 pollutant
- Creates physical problems
- Potential hazard to fish and wildlife

Water Quality - Sediment, continued:

Residue mgt. practices can result in a major benefit through:

 reduced soil erosion, improved aggregate stability, and increased organic matter

- Greater amount of surface residue, the greater the reduction in soil erosion
- As erosion is reduced, sediment delivery is generally reduced

Water Quality - Nutrients

- Phosphorus attached to soil is slow to move in the soil profile
- But soil attached phosphorus can move with surface runoff
- Residue mgt. practices reduce soil erosion, improve infiltration, and reduce runoff

Water Quality - Nutrients, continued:

 Nutrients that are dissolved but not infiltrated the soil can move freely in surface runoff

 Nitrate-nitrogen can move freely as water percolates through the soil

Water Quality - Nutrients, continued:

- Residue mgt. practices often increase water infiltration - care must be taken when applying nitrogen
- If nitrogen is fall applied, consider nitrification inhibitor
- Apply nitrogen as close as possible when crop needs are greatest

Water Quality - Nutrients, continued:

- Use caution when manure is surface applied
- Avoid applying on frozen ground
- Injecting manure reduces risk of surface runoff, but there are tradeoffs
- With mulch-till, manure may be incorporated using one of the planned tillage trips

Water Quality - Pesticides

- Pesticides can be soluble or attach quickly to soil particles
- If soluble, can move with surface runoff
- If attached to soil particles, can move offsite via erosion

Water Quality - Pesticides, continued:

- Residue mgt. practices reduce erosion, surface runoff, and sediment delivery
- Increase infiltration which may be detrimental where shallow groundwater exists
- Extensive macropores, open to the surface raise some concern

Water Quality - Pesticides, Macropores and Solute Movement

Water Quality - Pesticides, Macropores, continued:

- Earthworm channels contain large amounts of O.M.
- This O.M. material can help absorb pesticides
- Earthworm channels have increased microorganism activity

Water Quality - Pesticides, Macropores, continued:

- Timing and amount of precipitation important
- With small rain pesticide moves into soil profile
- If large storm occurs before pesticide enters soil, direct entry into macropore is possible
- Avoid surface application of a pesticide, especially if highly soluble, just prior to an imminent storm if not immediately incorporated

Water Quality - Pesticides, continued:

 Mulch-till provides opportunity to make a tillage pass to incorporate a pesticide or for row cultivation

Conservation Tillage – Bottom Line

- Helps keep topsoil, nutrients (P), and crop protection products on your fields and out of creeks, streams and lakes
- If you properly manage crop rotation, soil conditions, irrigation, equipment selection and adjustments, plant nutrients, and weed control, it helps improve yields and soil productivity

		Irr.					Infiltration Assessment (Water Quality)								H
Soil	Avail. Watar	Range	Soils	Inches Applied			SAR	Degre	ee of R	estriction on Use	e (ECiw in dS/m)			L	lity
Texture	(in./ft.)	(cb)	Intake	1.0	2.0	3.0		None		Slight to Moderate		ate Severe		cto	libi
			Family	Infilt	ration '	Time								Fac	rod
Sands	0.5				(Hrs)		0 – 3	> 0	.7	0.7 - 0.2		< 0.2		N	ΙE
Loamy Sands	1.0	30-40	0.1	2.8	10.5	22.3	3 - 6	>1	2	1.2 – 0.3		< 0.3		\bigcirc	Soi
Fine Sands			0.3	1.0	3.5	6.8	6 - 12	> 1	.9	1.9 – 0.5		< 0.5			~
V. F. Sands		0010	0.5	0.63	2.0	3.8	12-20	> 2.9		2.9 - 1.3		< 1.3		0.2	lity
L. F. Sands	1.25		0.75	0.48	1.5	2.8	20-40	> 5.0		5.0 - 2.9		< 2.9		lay 	libi
Loamy Very			1.0	0.33	1.0	1.8	SAR = 4	, ECiw	= 1.1	dS/m (restriction	n on t	on use: slight)		C 0.1	roc
Fine Sands				0.00	0.0			,						2	Μ
Sandy Loam		40.50	1.25	0.28	0.8	1.5					Hy	vdrologic		0.1	Lo
Fine Sandy Loam	1.5	40-50		0.22	07	1.2	Soil		Do	wnward	50	(HSC)		and – (
Louin			1.5	0.23	0.7	1.5	Structu	ire 1	mover	nent of H ₂ O	Und	(IISC) Irained soils		S: 05	
Very Fine			1.75	0.20	0.6	1.1	Single G	rain			A	it.		0	
Sandy Loam		T 0 <0	0.6 Inte	ko. 2 5	' annlic	d and	Granul	ar		Rapid		al		2	
Loam	2.0	50-60	2.6	hrs. to	infiltra	te	Granu					nti Lo		am 0.3	
Silt Loam							Block	y			D	ote		– (y
Silt			Surface	Irrigat	ion Sys ⁻	tem –	Prisma	tic	Μ	oderate		P		ilt 25	ilit
Sandy			Graded	Border	· Progra	am:	Platy	7		C			S O	dib	
Clay Loam Silty		<0 - 0	INPUT	<u>S:</u>			Massi	VO		Slow		lun		9.	Ero
Clay Loam	2.2	60-70	• (CFS = 7.5 Vet annlig	eation de	nth (? ")	Wiassi	ve			D	R ligh		ilt - 0	L L
Clay Loam			Wet apply Wet apply Wet apply Wet apply		slope (0.001'/ft.)		Soil is Granular			ar (Rapid)		Ħ		S 4.	Hi
Sandy Clay	2.0		Soil Intake (0.6)				B soil group							25.0	1
Sitty Clay	2.0	70-80	• 1	Manning' Sield Wid	s (n = .15)	5)	Soil: Silt Lo		ment: Irrigated with Hi-Fle			rn Out	.2535		
Clay			• 1	Field Len	gth (600')	Soils 1	Intake Fa	ı mily: 0.	.6 mode	rate in	filtration			
Silt Loam:						·	SAR is 4 & ECiw is 1.1 rate								
Irrigated at 55 cb		<u>RESUL</u>	RESULTS:				Signt restriction on use Soil Erodibility				Structure: Granular			cia	
		• 4	Appl. Efficiency (81%) Rupoff – 0 11"			potent	potential is moderate to (er			osion is <u>not</u>			2008		
	high observed)														
1/ <u>Clav</u> is resi	stant to c erately d	detachmen etachable (t (low erodi moderate te	bility po bigh er	tential). odibility	Sand is v potenti	easily detache	a (low e ly detac	erodibi	ity potential due	e to la otenti	rge dense pa	rtic	ies). <u>Silt</u>	

(SQ – 10) Water Erosion Management Considerations (Assessment Guide)

(SQ – 12) Wind Erosion Management Considerations (Assessment Guide)

	I = soil erodibility index; K = soil surface roughness factor; C = climatic factor; L = unsheltered distance; V = vegetative cover																			
	Ι				K				C		Mo. %EWE		L		E O			V		
		SEI		K	KrdKrrK = Krd x Krr			NM		Jan	4.1	W	ED	П	l <mark>l erosi</mark> d		Lbs/acr	Lbs/acre of residues		
	WEG	T/ac/yr		K				C factors				Fac	ctor	ïelo t.			or growing crops			
			1	1		1				Feb	23.7	1.	00	e F fee	soi					
	1	220						30		Mar	26.8		ŬŬ	th in	<mark>the</mark>		ves al		lue l	
				.9	2	.9	Ę			Iviai	20.0	2	00		/er		uru 8.	on	sid	
	2	104			<mark>r soil erosio</mark>	.8 .7	osio	50 80 100 120	Lower C factor = lower soil erosion	Apr May	17.6	5.00	00	dth ce (low	1	e) c Ma 1 d-	<mark>osi</mark>	f re ros	
				.8			erc				11.0 1.6 .4		he Wi Distan	<u>ce, the</u>		SG my ugl	er	s of d e		
	3	56					0.1					5.00				nts (hro	lic	vin		
				.7			L S					7.00 9.00 11.00 13.00		es t sd 1	<mark>sheltered</mark> distand		ain equivalen lational Agro Figures a-1 t	<mark>= lower s</mark> e	ia vel	
	4	56			we		Me			Jun			00	ere					scti	
				.6	<mark>Krd</mark> factor = lo	.6				Jul				ply the <u>WED factor t</u> etermine the Unshelt naller the unsheltered					effe	
	4L	56	-	5		5	L.						9.00						he n re	
	_	20		.5		.5				Aug	.2						Gra S N 2,]	ne	s tl s in	
	5	38	1	4			L.			C	0		.00		sun		to the Small d in the NRC (AM), Part 5(<mark>gher resid</mark>	rop	
	6	21		••			N			Sep	.9 1.3				the				bre g c	
	U	41	-		er		E-			Oct			.00		naller 1				ex ex vin	
	7	21			MO		MO					10							ro	
	,						L	150		Nov	5.0			ltig o do	e sn		fer und (N	H	r g	
	8	0												Mut	The		fo		o Th	
										Dec	7 .6									
		WEG = W	Trodih	ility G	roun		WED = Wind Frosion Direction							e.g. calculation: A fine textured soil was						
	$\frac{1}{2} = \text{Soil Erodibility Index (I) for}$							factor (Reference: Tables 502-8A						irrigated 3x during 45 days. 12% of the						
irrigated soils							thru 502-8E of the NRCS NAM).						annual EWE occurs during this period.							
Krd = Soil Ridge Roughness factor (is a function of Pidga baight for						r	WED factors are a function of field						Therefore: Texture Wetness Factor (TWF)							
(is a function of Ridge height & Spacing, Angle of deviation & SEI)							0	preponderance and angle of						= 3; No. of irrigations during period = 3;						
Krr = Random Roughness (rr) factor							tor	deviation.						Nonerodible Wet Days = $3 \times 3 = 9$; Invitation Easter (IE) = $(45 - 9) \div 45 = 90$;						
(Krr is a function of Cloddiness, as							S	V factor relates the kind, amount & orientation of vegetative material to its equivalent in lbs/ac of small grain residue in reference condition Small						Irrigation Factor (IF) = $(45 - 9) \div 45 = .80$; Adjusted EWE = $(.80) (12\%) = 9.6\%$						
created by tillage & SEI) C is a function of windspeed &																				
surface soil moisture														Note: angle of deviation is 0 ⁰ , when wind						
<u>% EWE</u> = % Erosive Wind Energy							gy	Grain Equivalent (SGe)							is perpendicular to the row					
(values are for Las Cruces, NM)											Rudy Garcia 2008									

E = f (IKCLV): **E** = estimated avg. annual soil loss in tons/ac/yr; f = relationships are not straight-line mathematical calculations; I = soil erodibility index; K = soil surface roughness factor; C = climatic factor; L = unsheltered distance; V = vegetative cover

NOTE: NRCS will be using WEPS (Wind Erosion Prediction System) to make wind erosion assessments

