Drip Irrigation for Small Plots (a low-tech, low-cost, gravity system)

Presented by: Dan Smeal

New Mexico State University

Agricultural Science Center at Farmington

New Mexico Organic Farming Conference

Albuquerque, NM

February 16-17, 2007

Overview

- Brief introduction to drip irrigation.
 - Definition/Characteristics
 - Components
 - Advantages/Disadvantages
- Description of a Low-Cost, Low-Tech, Gravity System
 - Set-Up and Management
 - Irrigation Scheduling
 - Fertilization
- Design Considerations
- Summary

Drip Irrigation

- The slow, frequent application of small volumes of irrigation water to the base or root zone of plants.
- Also referred to as trickle or micro irrigation.
- Not new: Modern use began in the late 1960's to early 1970's after the introduction of plastic pipe

Characteristics Low Volume & Low Pressure

- Drip flow rates generally range from 0.5 to 2.0 gallons per hour (gph) per outlet (can exceed 20 gph).
- Operating pressures range from 2 to 6 pounds per square inch (psi) in gravity systems up to 15 to 30 psi (high pressure systems).
- Standard impact or pop-up spray sprinklers:
 - Flow rates can range from 2 to 20 gallons per minute (gpm).
 - At pressures ranging from 25 − 100 psi.
 - Large guns can have flow rates approaching 100 gpm.

<u>Characteristics</u> Localized Application of Water

- Soil Wetted Area (diameter)
 - Coarse Sand: 0.5 to 1.5 feet
 - Fine Sand: 1.0 3.0 feet
 - Loam: 3.0 to 4.5 feet
 - Heavy Clay: 4.0 6.0 feet
- As opposed to sprinkler or flood where the entire soil surface is wetted.

<u>Characteristics</u> Frequent Applications Required

- Drip: Every day to every-other day in summer.
- In contrast to...
 - Sprinklers (1-3 times per week)
 - Or flood (once per week or less)

Characteristics

• Drip lines can be above ground or buried (subsurface drip or SDI).

Typical Drip System Components

- Pump or pressure source
- Control valve (to turn system on and off)
- Check valve (to prevent backflow into water source)
- Fertilizer injector (to apply fertilizer directly into irrigation water)
- <u>Filter</u>
- Pressure regulator (to reduce pressure down to 30 or below)
- Main line and sub-main lines/header (to carry water to drip lines)
- Laterals or drip lines (distributes water to the outlets at base of plants)
- Emitters (outlets to plants)
- Other: Air vents, meters, timers, controllers, drains

Components

Fertilizer Injectors

NMSU CES

Bernalillo County

Drip Emitters

Single and multi-outlet emitters

Micro sprinklers & bubblers

Pressure Regulating or Compensating Emitters

Spaghetti Tubing

• Carries water from emitter or manifolds to

base of plants.

Typical Advantages of Drip Irrigation

- **Potential** water savings over other irrigation methods.
 - Small wetted area (less evaporation)
 - No runoff (reduced soil erosion)
 - Limited deep water drainage (with proper irrigation scheduling)
 - Good water distribution uniformity (esp. w/ pressure compensating emitters)
 - Unaffected by wind, etc.
- Adaptable to any shape, size and slope of field.

Typical Advantages of Drip Irrigation

- Weed growth is reduced!
- High fertilizer efficiency.
 - Injected fertilizer (fertigation) is applied directly to root area and can be applied at any time and any dosage without wetting plant foliage.
 - Improved uptake of phosphorus and ammonium N from frequently wetted upper soil layer.
- Yields are typically increased.
 - Soil moisture and fertility in root zone can be maintained at optimum levels

Typical Disadvantages of Drip

- Filtration is critical
 - Emitter clogging can disrupt distribution uniformity
 - Algae growth and scale build-up (usually CaCO₃)
 must be controlled
- Drip tape and other components can be easily damaged by vandals, rodents, etc.
- Increased management skills required

Typical Disadvantages of Drip

- High initial costs (compared to flood).
- Water must be available on a regular basis.
- Potential salt build-up in arid region soils.
 - May require periodic leaching with sprinkler system

Low-Cost, Low-Tech, Low Pressure (Gravity) Drip Systems

- The KB-Drip System (KB = "Krishak Bandhu" = "farmer's friend")
 - Developed in India by International Development
 Enterprises (IDE). Headquarters in Lakewood, CO.
- The Chapin Bucket Kit
 - Chapin Watermatics, Watertown, NY
- The Netafim LPS System (Cost ?)

Components of a 2000 sq. ft. (200 m²⁾ KB Kit: Cost < \$20 (FOB India)

ITEM	DESCRIPTION	QTY.		ITEM	DESCRIPTION	QTY.
\$	Cloth 1 m x 1 m	1			Polytube 16 mm	22 mtr.
0時	Tap & Check Nut	1		0	Easy Tape Roll	220 mtr.
T	Filter	1			Microtube 25 cm.	630
\$	Tee 16 mm	22		6	Thumb Punch	5
99	End Cap	2			Sleve 16 mm	22

Basic Layout

Advantages of the Low-Pressure Drip System over Conventional Drip System

Disadvantages

- Simple, low-cost emitters are not pressure compensating.
 - Application uniformity will vary with topography
 - Usually not a concern with small plots
- Cheap (6-mil) drip tape may only last one or two growing seasons.
- Somewhat labor intensive.

Success at Farmington using 55 gallon plastic barrels.

Converting Head (water height above water discharge point) to Pressure

- Water height in feet (head) x 0.433 = pounds per square inch (psi)
- Inversely:
 - Water pressure (psi) $\times 2.31 = \text{feet of head}$
- Example:
 - Water level in tank is 6 feet above drip emitter outlet (i.e. 6 foot of head).
 - Pressure = $6 \times 0.433 = 2.6 \text{ psi}$

Alternate Pressure Sources

Solar or Wind-Powered Pumps

Plastic T's and Sleeves (Clamps)

Specifications per Plot (Tank) in the Farmington Study

- Head: 5 ft. 10 in. (2.6 psi)
- Total Irrigated Area = 2340 sq. ft.
 - Laterals per plot: 12 (spaced 36 in. apart)
 - Lateral length: 65 feet
- Emitters per lateral: 40
- Emitters per plot: 480
- Flow rate per emitter: ~ 1.2 fl. oz. per minute (0.54 gph)
- Flow rate per plot: ~ 4.5 gpm (270 gph)

Total Water Applied and Yield of Sweet Corn, Chile Peppers, and Tomatoes at Farmington

Sweet Corn (12" spacing in 36" or 34" rows):

- 35 gallons per plant (11, 667 gals per 1000 sq. ft.)
- 700 ears per 1000 sq. ft. (30,492 ears per acre)

58 dozen @ \$2.50/doz. = \$145.00

Chile Peppers (18" in 36" rows or 12" inch in 34" rows)

• 48 to 34 gallons per plant (10,667 to 12,014 gals/1000 sq. ft.)

• 740 to 820 lbs per 1000 sq. ft. (16.1 to 17.9)

tons/acre)

20 sacks (40#) @ \$14.00/sack = \$280.00

Tomatoes (24" spacing in 34" rows)

- 36 gallons per plant (12,720 gals/1000 sq ft)
- 1,525 lbs. per 1000 sq. ft. (33.2 tons/acre)

58 lugs (26#) @ \$14.00/lug = \$800.00

System Design Considerations based on Irrigation Needs

- Prior to planning your drip-irrigated garden determine the volume of water available to you and the maximum flow rate of that water.
- One way to do this is to determine how long it takes to fill a 5-gallon bucket.
- This will be important in determining how many plants you can safely irrigate without imposing water stress.

In our study for example...

- It took only 10 minutes to empty the reservoir (45 gals.)
- In summer, chile and tomatoes may require 0.4 to 0.5 gallons of water per plant per day
- Assuming an average plant density of 220 plants per 1000 sq. feet, total average daily needs would be about 100 gallons (2-3 fills of the 55 gallon reservoir) or... 200 gallons for the entire 2000 sq. ft. plot!

Irrigation Scheduling

- To effectively schedule irrigations you must know:
 - The flow rate of each emitter.
 - The crop (or plant) canopy area.
 - An estimate of the plant's daily water-use (evapotranspiration or ET)

Scheduling Irrigations The Irrigation Requirement

• The equation used to estimate the irrigation requirement (IR) per plant is:

 $IR = (0.623 \times CA \times Plant Factor \times ETr) \div IE$

Where:

IR = the irrigation requirement in gallons

0.623 = gallons of water required to fill 1 sq. foot 1 inch deep

CA = plant canopy area in square feet (see slide for explanation)

Plant Factor = 0.85 for tomatoes, chile and sweet corn (may be higher for melons, squash, cucumbers, etc.)

ETr = reference ET (refer to chart next page or see http://weather.nmsu.edu for your specific location)

IE = irrigation efficiency (assume 90% or 0.90 for low-tech drip system)

Irrigation Scheduling (calculating the crop canopy area)

- In drip irrigation, the amount of water to apply is usually indexed to the crop canopy area.
 - Formula: Area of a circle = $d^2 \times 0.785$

(diameter x diameter x 0.785)

• Example: Plant diameter = 18 inches or 1.5 feet.

Area = $1.5 \times 1.5 \times 0.785 = 1.77$ square feet

Average Daily ETr (inch/day) Estimates for Different NM Sites

	Month						
Site	May		June	July	Aug	Sept	
Days	1-15	16-31	1-30	1-31	1-31	1-15	16-30
Farmington	0.35	0.40	0.42	0.38	0.28	0.25	0.22
Albuquerque	0.37	0.41	0.44	0.40	0.29	0.26	0.23
Las Cruces	0.39	0.42	0.46	0.43	0.31	0.28	0.25

Example

- Formula: $IR = (0.623 \times CA \times Plant Factor \times ETr) \div IE$
 - Scenario:
 - Location Albuquerque
 - Date: May 25 (ETr = 0.41 inch)
 - Chile plant (plant factor = 0.85)
 - Measured (circular) plant diameter = 1 foot
 - Estimated irrigation efficiency (IE) = 90% or 0.9
 - Calculations:
 - CA = 1x1x0.785 = 0.785
 - IR = $(0.623 \times 0.785 \times 0.85 \times 0.41) \div 0.90 = 0.170 \div 0.90 = 0.19$ gallons (24 fluid ounces) per plant per day

Calculating Peak Daily Water Requirements for Planning & Design

- IR = $(0.623 \times CA \times Plant Factor \times ETr) \div IE$
- Scenario:
 - Location Albuquerque
 - Peak daily ETr = 0.44 in mid-June
 - CA = full (assuming chile is planted on 30-inch rows and plant spacing is 1 foot, full canopy = $2.5 \times 1 = 2.5 \text{ sq.}$ feet.
 - Plant factor (chile) = 0.85
 - IE = 0.90
- Calculation:
 - IR = $(0.623 \times 2.5 \times 0.85 \times 0.44) \div 0.90 = 0.65$ gallons (83 fluid ounces) per plant per day

More Irrigation Tips

- There is no need to water the same plants every day (we watered every-other day).
- You could split the 2000 sq. ft. garden into two sections watering one-half at a time, for example.
- Keep in mind however, that to satisfy crop ET, you'll need to apply 2x the water per application than you'd apply if irrigating every day.

Example: 83 chile plants (32 gals. per day) = 7 fills per day (during peak ET)

Fertilization

- We used dry powder, soluble Miracle Grow type products (15-30-15 or 20-20-20) and applied between 1 and 1.5 lbs. per tank about every 10 days between June 1 and mid-August.
- In addition, we applied about 1 pint of liquid N (32-0-0) per tank every-other week.
- Each tank irrigated about 460 plants.

Fertilization

- Many organic products are available.
- See Peaceful Valley Catalog for example:
 - http://www.groworganic.com/cgy_347.html
- These products are not cheap.

Organic Products

Courtesy: Joran Viers, NMSU CES, Bernalillo County

Organic Products

Organic Products

For Organic Certification

- You may be able to make your own compost or manure tea.
- Check with the New Mexico Organic Commodity Commission for more information.

Common Problems and Remedies

- Emitter plugging (especially after heavy rain)
 - Remove and blow-out or replace emitter.
 - Add bleach periodically to control microorganism (i.e. algae) growth.
 - Add vinegar or weak acid to control calcium carbonate build-up.
- Expansion/Contraction of drip tape with temperature changes
 - Pull tape taught at end before irrigation to remove kinks.
 - Irrigate in early morning when drip line is contracted.

Other Tips

- Irrigate early in morning:
 - Drip tape will be contracted.
 - Avoid irrigating with hot water.
- Tie microtube emitter in one overhand, loose knot and point opening downstream when inserting in drip line.
- Check filter and wash screen often.
- If water is dirty, pre-filter or settle before adding to reservoir.

• Avoid using transparent or translucent drums to prevent algae growth.

Lateral Length

- Maximum lateral length will depend on number of emitters.
- In our evaluation, with 40 emitters per lateral, we would not recommend a lateral length of more than 75 feet.

