Irrigation Monitoring Using Soil Water Tension

One of the most important tools we have been using at the Malheur Agricultural Experiment Station over the past two decades is the granular matrix sensor (GMS, Watermark Soil Moisture Sensor, Irrometer Co., Riverside, CA), which measures soil moisture. It is only about 3 inches long and normally is buried vertically in the ground.

Like gypsum blocks, GMS sensors operate on the principle of variable electrical resistance. The electrodes inside the GMS are embedded in granular fill material below a gypsum wafer. Additional granular matrix is above the wafer in the fabric tube, where water enters and exits the sensor.

Gypsum dissolved in water is a reasonable conductor of electricity. Thus, when the sensor contains a lot of water, the electric current flows well. When there is a lot of water in the soil, there is a lot of water in the sensor. As the soil dries out, the sensor dries out, and resistance to the flow of electricity increases.

The resistance to the flow of electricity (expressed in Ohms) and the soil temperature are used to calculate the tension of the soil water in centibars (cb). Soil water tension (SWT) is the force necessary for plant roots to extract water from the soil. Soil water tension reflects the soil moisture status. The higher the tension, the drier the soil.

Other devices for measuring soil water tension include tensiometers, gypsum blocks, and Irrigas.

What does a granular matrix sensor do for growers?

In the past, growers had to train themselves to guess when the soil was dry enough to warrant irrigation of their crop. Even with years of experience and well-developed agricultural intuition, it is very difficult to consistently irrigate at the right moment and to apply the ideal amount of irrigation water to maximize crop production. It would be nice to have some consistent reference points of SWT for irrigation scheduling. The digital readout of the...
GMS provides reference points to help growers attain higher yields and better crop quality on their farms.

On a scale of 0 to 100 cb soil water tension, how wet is your field?

Roughly speaking, a GMS reads the following scale of SWT for a medium-texture soil:

- > 80 cb indicates dryness.
- 20 to 60 cb is the average field SWT prior to irrigation, varying with the crop, soil texture, weather pattern, and irrigation system.
- 10 to 20 cb indicates that the soil is near field capacity.
- 0 to 10 cb indicates that the soil is saturated with water.

What new information can a GMS give you?

A GMS can tell you whether the rain last night was really enough to give your onions, for instance, a good drink. It can tell you whether an overcast day is reducing crop water use in a potato crop enough to delay the next irrigation. It can tell you whether you will need to irrigate more often in July than in June. Since the reading comes directly from the crop’s root zone, it is a tool designed to provide one more piece of information to your agricultural intuition.

Is scheduling irrigation from SWT really feasible?

We have been using GMS at the Malheur Experiment Station for 20 years, and we can answer with a resounding YES. There is no replacement for the watchful eye of an experienced grower. But, imagine a talented stockbroker with great financial logic and intuition. Does he not excel even more after checking stock quotes on the Internet? The same is true for the grower. For example, walking down to your onion field every morning and checking the readout of six or more GMS will help you know when to irrigate the field. In fact, by doing so you usually can predict irrigations a day or two ahead of time.

Our research has allowed us to determine the threshold SWT of various crops growing on silt loam under different irrigation systems. We found that irrigating at these critical values has significant benefits to crops.

The SWT irrigation threshold varies not only by crop but also by soil texture, climatic factors, and irrigation method. The threshold values that maximize marketable yield are known for a wide array of commercial crops growing on different soils under different climatic conditions and irrigation systems.

Let’s talk more about how using SWT can MAXIMIZE grower’s profits

- Less water used — An irrigation schedule based on a threshold SWT usually results in fewer irrigations per year, as it can help prevent overwatering.
- Less pumping energy consumed
- Lower crop stress, which can result in less pest and disease pressure
- Prevention of excessive leaching of mobile plant nutrients, especially nitrogen and boron
- Prevention of groundwater pollution
- Reduced wear and tear on irrigation systems

From our own experiments, crops that are irrigated according to SWT criteria have higher marketable yield, increased size, and increased produce quality.

How hard is it to collect SWT information?

The GMS can be read in several ways. One way is with a hand-held Watermark Soil Moisture Meter (Model 30KTCD, Irrometer
Co., Riverside, CA). The hand-held meter is used much like a voltmeter and is manually connected to the sensor wires with alligator clips. It is simple to use, but labor intensive. You should record the data from the meter by hand to make SWT comparisons over time.

For automatic reading and recording of GMS data, dataloggers are available. Both the Hansen AM400 (Mike Hansen Co., Wenatchee, WA) and the Watermark Monitor (Irrometer Co., Riverside, CA) are dataloggers that are installed at the edge of a field. These dataloggers can be programmed to collect and record data automatically from six or seven GMS and one soil temperature sensor throughout the day. You then can view the data as numbers or graphs on the unit itself, or you can download it to a computer for easy viewing in graphing software or a standard spreadsheet application (Figure 1). Each GMS only provides information about soil water tension in the immediate vicinity of the sensor.

But my field is so BIG and that sensor is so small…

The success of the GMS hinges on how reliably a group of sensors represents the soil moisture of a field. That is why it is important to install the sensors at points in the field that accurately reflect the average root zone for the average plant. If part of the field has different water needs, create a second zone and install sensors at representative areas of that zone.

Granular matrix sensors usually are installed in a group of six or seven per irrigation zone. Each GMS provides information only about soil water tension in the immediate vicinity of the sensor. Because SWT varies from place to place in a field, and sensors also vary, six or more GMS will provide more reliable estimates of SWT for a field than a single GMS.

The sensors complete a simple electrical circuit. Thus, you can easily add an “extension cord” using normal electrical wire in order to collect information from many feet into the field. It is important to maintain clean, dry connections between the extensions and the sensor wires.

What about installation? Can I do it myself?

Installation is easy and requires few additional tools. You will need a $\frac{7}{8}$" soil sample probe to create the right size hole for the sensor. Keep in mind that GMS are designed to accurately represent the relative amount of water in the field, so select an area that is not remarkable.

![Figure 1. Variation of soil water tension (SWT) over a growing season for furrow-irrigated onions (left) and sprinkler-irrigated potatoes (right).](image-url)
Figure 2 (for coarse soils) and Figure 3 (for silty soils) illustrate the steps involved in installation. If you have attached a PVC tube to the sensor with glue prior to installation to make it easier to remove the sensors from the field, use the installation method in Figure 2.

The accuracy of the sensor relies on good contact with the soil. The GMS installation depth depends on the crop’s root zone depth, but it also can be affected by soil depth and soil texture. For shallow-rooted crops, sensors installed at less than 12 inches deep are sufficient. For crops with a deep root system, also install sensors at greater depth within the root zone. The root zone depth might be greater in well-drained soils and less in clay soils or soils with compacted layers or poor drainage.

To install a GMS sensor, first soak the sensor for several minutes until it reaches saturation. Then make a hole in the soil using a soil sample probe with an external diameter corresponding to the sensor diameter. Since the sensitive area of the GMS is centered 0.8 inch above the tip, the hole should have an additional 0.8 inch of depth to provide the desired sensor installation depth.

The next steps depend on the texture of your soil. For coarser soils that have little tendency to lose their structure when saturated, pour about 2–3 oz of water into the hole and then place the sensor at the bottom of the hole (Figure 2). Silty soils tend to lose their structure when saturated and can seal around the sensor, thus impeding the entrance and exit of water. For silty soils, place the sensor at the bottom of the hole and then add about 2–3 oz of water to the hole (Figure 3).

Finally, regardless of soil type, backfill the hole with fine soil and use a tube, metal bar, or wooden stick to lightly compact the backfill dirt in order to prevent formation of a preferential path for rain or irrigation water to easily reach the sensor (Figures 2 and 3). Such a path is undesirable because it distorts soil moisture status, thus significantly compromising the reliability of the SWT data obtained by the GMS.

Sensor troubleshooting

The sensor operates by completing an electric circuit. It is not uncommon for a frayed wire to “short circuit” the sensor, causing it to read zero continually, or for a cut wire to create an “open circuit,” causing an unreasonably high reading. If sensors are wet and readings should be low, a few common default error numbers include 199 and 250, depending on the datalogger. Do not remove sensors from the soil by pulling on the wire since this can destroy the GMS.

Even with proper maintenance, sensors have a limited lifetime before they physically wear out or their sensitivity is compromised. Replace the unit at that time. Check sensors in the spring before use; dry sensors should have high readings, and sensors soaked in water for 1.5 minutes should read between 0 and 4 cb.

What is the bottom line for cost? Can I really afford this?

GMS systems as a whole are relatively inexpensive. With yield and quality increases and greater savings on water, energy, fertilizer, and other inputs, costs are quickly recovered.

For more information

Soak GMS several minutes until it reaches saturation. Use \(\frac{7}{8} \)-inch probe to remove soil to desired depth + 0.8-inch sensor tip. Pour 2–3 oz of water into the hole. Use dowel to insert the sensor. Expect snug fit. Backfill the hole. Avoid any air pockets.

Figure 2. Installation procedure of a granular matrix sensor (GMS) in coarse soil at an 8-inch depth in the soil.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soak GMS several minutes until it reaches saturation.</td>
<td>Use (\frac{7}{8})-inch probe to remove soil to desired depth + 0.8-inch sensor tip.</td>
<td>Pour 2–3 oz of water into the hole.</td>
<td>Use dowel to insert the sensor. Expect snug fit.</td>
<td>Backfill the hole. Avoid any air pockets.</td>
</tr>
</tbody>
</table>

Figure 3. Installation procedure of a granular matrix sensor (GMS) in silty soil at 8-inch depth.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soak GMS several minutes until it reaches saturation.</td>
<td>Use (\frac{7}{8})-inch probe to remove soil to desired depth + 0.8-inch sensor tip.</td>
<td>Use dowel to insert the sensor. Expect snug fit.</td>
<td>Pour 2–3 oz of water into the hole.</td>
<td>Backfill the hole. Avoid any air pockets.</td>
</tr>
</tbody>
</table>

For more Extension publications on irrigation management, visit the OSU Extension website at http://extension.oregonstate.edu.

Product sources
Watermark Soil Moisture Sensor—Irrometer Co., Riverside, CA
Hand-held Watermark Soil Moisture Meter (Model 30KTCD)—Irrometer Co., Riverside, CA.
Hansen AM400 Datalogger—Mike Hansen Co., Wenatchee, WA
Watermark Monitor Datalogger—Irrometer Co., Riverside, CA

Trade-name products are mentioned as illustrations only. This does not mean that the Oregon State University Extension Service either endorses these products or intends to discriminate against products not mentioned.

Acknowledgment
Funding to help prepare this publication was provided by an Oregon Watershed Enhancement Board grant.

Quick Facts

- Soil water tension indicates the soil water status and helps a grower decide when to irrigate, thus avoiding under- and over-irrigation.
- Crops that are sensitive to water stress are more productive and have higher quality if they are watered precisely using soil water tension (SWT) than if they are under- or overirrigated.
- The optimum soil water tension for a particular crop depends primarily on soil texture.
- Common instruments to measure soil water tension are tensiometers, gypsum blocks, and granular matrix sensors.
- Treasure Valley onions on silt loam are irrigated at a SWT of 20 to 25 cb. Potatoes growing on the same site and soil type are irrigated at a SWT of 30 to 60 cb, depending on the irrigation system.
- “Soil water potential” is the negative of “soil water tension.” A soil water potential of −20 cb is the same as a soil water tension of +20 cb. Also, cb (centibars) is the same as kPa (kilopascals).
- Granular matrix sensors provide good estimates of soil water tension for many soils.
- Sensor readings can be conveniently logged, providing a record of soil moisture conditions to aid growers in timing irrigations.
- Sensors and wiring need to be checked and loggers require minimum, but necessary, maintenance. Keep loggers clean and dry and replace their batteries as needed.