
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 



EFH Chapter 3 Hydraulics                                                                           August 2009             

 

ENGINEERING FIELD HANDBOOK  
Chapter 3 (650.03) - Hydraulics 
 
 
 
 
 

Acknowledgments 
 
This major chapter revision was prepared under the general direction of Claudia Hoeft, 
national hydraulic engineer, Natural Resources Conservation Service (NRCS), 
Washington, DC, with assistance from National Design, Construction, and Soil 
Mechanics Center staff, NRCS, Fort Worth, TX.  Bill Irwin, national design engineer 
(retired), NRCS, Washington, DC, provided direction in the early stages of chapter 
revision. 
 
Gilberto Urroz, Ph.D., P.E., associate professor and researcher at Utah State University, 
Logan, UT, is the principal author of this manuscript.  Larry Goertz, hydraulic engineer, 
M&E Consultants, Heidenheimer, TX, provided extensive edits. 
 
Extensive comments were supplied by Mike DiLuzio, civil engineer (retired), NRCS, 
Grand Junction, CO; Ben Doerge, civil engineer, NRCS, Fort Worth, TX; Jon Fripp, 
stream mechnics engineer, NRCS, Fort Worth, TX; Tony Funderburk, agricultural 
engineer, NRCS, Fort Worth, TX; Morris Lobrecht, civil engineer (retired), NRCS, Fort 
Worth, TX; Clarence Prestwich, agricultural engineer, NRCS, Portland, OR; Rick 
Schlegel, agricultural engineer, NRCS, Woodward, OK; Chuck Schmitt, civil engineer, 
NRCS, Casper, WY; Marty Soffran, agricultural engineer (retired), NRCS, Salina, KS; 
Karl Visser, hydraulic engineer, NRCS, Fort Worth, TX; and Jerry Walker, agricultural 
engineer, NRCS, Fort Worth, TX. 
 
 
 
 
 
 
 
 
 
 
 
 
August 2009 

 2



EFH Chapter 3 Hydraulics                                                                           August 2009             

Table of Contents 
0300 Introduction.............................................................................................................. 11 

0301 Dimensions and Units .......................................................................................... 11 
0302 Unit Conversions ................................................................................................. 14 
0303 Dimensional Homogeneity in Equations ............................................................. 14 
0304 Physical Properties of Water................................................................................ 15 

0310 Hydrostatics ............................................................................................................. 20 
0311 Hydrostatic Pressure Relationships...................................................................... 20 
0311.1 Piezometers and Manometers ........................................................................... 24 
0312 Forces on Submerged Plane Surfaces .................................................................. 31 
0313 Buoyancy Forces.................................................................................................. 36 
0313.1 Buoyancy Applications..................................................................................... 36 

0315 Hydrokinetics........................................................................................................... 40 
0316 Flow Continuity ................................................................................................... 40 
0317 Conservation of Energy ....................................................................................... 45 
0317.1 Potential Energy................................................................................................ 46 
0317.2 Pressure Energy ................................................................................................ 46 
0317.3 Kinetic Energy .................................................................................................. 46 
0317.4 Equation of Energy and Bernoulli’s Principle .................................................. 51 
0317.5 Hydraulic and Energy Gradients....................................................................... 54 

0320 Open Channel Flow ................................................................................................. 57 
0321 Uniform Open Channel Flow............................................................................... 57 
0321.1 Geometric Characteristics of Prismatic Channels............................................. 59 
0321.2 Manning’s Equation.......................................................................................... 65 
0321.3 Manning’s Resistance Coefficient .................................................................... 66 
0321.4 Calculations in Uniform Flow .......................................................................... 68 
0322 Specific Energy in Open Channels ...................................................................... 70 
0322.1 Critical Flow ..................................................................................................... 73 

    0322.1.1 Flow Types…………………………………………………………………..75 
    0322.1.2 Critical Flow in a Rectangular Channel……………………………………..76 

0322.2 Obstacles in Open Channels ............................................................................. 78 
0323 Momentum Analysis in Open Channels .............................................................. 81 
0323.1 Hydraulic Jumps ............................................................................................... 85 
0324 Varying Open Channel Flow ............................................................................... 90 

    0324.1 Gradually-varied Flow………………………………...………………………91 
0324.2 Classification of Gradually-varied Flow........................................................... 92 
0324.3 Standard step method........................................................................................ 94 
0325 Sediment Transport.............................................................................................. 96 
0325.1 Sediment Properties .......................................................................................... 96 
0325.2 Threshold of Sediment Motion ....................................................................... 101 
0325.3 Suspended Sediment Load.............................................................................. 104 
0325.4 Bed Sediment Load......................................................................................... 107 
0325.5 Scour and Deposition in Channels.................................................................. 109 

0330 Pipe Flow ............................................................................................................... 114 
0331 Friction Loss Methods ....................................................................................... 115 
0331.1 Manning’s Equation for Pipelines .................................................................. 115 

 3



EFH Chapter 3 Hydraulics                                                                           August 2009             

    0331.2 Darcy-Weisbach Equation and Friction Factor……………………...……….120 
0331.3 Laminar and Turbulent Friction Factor Equations.......................................... 122 
0331.4 Pipe Flow Solutions Using the Darcy-Weisbach Equation ............................ 123 

    0331.5 Pipe Flow Solutions Using the Hazen-Williams Formula……………...........125 
0331.6 Local Losses in Pipelines................................................................................ 130 
0331.7 Pumps in Pipelines.......................................................................................... 137 

    0331.7.1 Pump Operational Characteristics………………………………………….138 
    0331.7.2 Pump Power and Efficiency………………..……….…..……….…………139 

0332 Pipelines and Networks...................................................................................... 141 
0332.1 Pipelines in Series ........................................................................................... 142 
0332.2 Pipelines in Parallel......................................................................................... 145 

    0332.3 Pipelines Converging at a Single Point………………………………………147 
0332.4 Pipeline Networks .......................................................................................... 150 
0333 Appurtenances in Pipelines and Networks ........................................................ 150 
0333.1 Air Vacuum and Release Valves .................................................................... 150 

    0333.2 Air Vents…………………………….…………………………..…………...154 
0333.3 Pressure Control Valves.................................................................................. 155 
0333.4 Surge/Air Chambers........................................................................................ 157 
0333.5 Check Valves .................................................................................................. 159 
0334 Hydraulic Transients (Water Hammer) ............................................................. 159 
0335 Cavitation…………………………………………………..…………………..161 
0336 Culverts ............................................................................................................. 164 
0336.1 Culvert Flow with Inlet Control...................................................................... 165 
0336.2 Culvert Flow with Outlet Control ................................................................... 167 
0337 Sprinkler Irrigation............................................................................................. 170 
0338 Microirrigation................................................................................................... 172 

0340 Water Flow Measurements .................................................................................... 173 
    0341 Measurements in Pipelines……………………………………………..…….. 173 
    0341.1 Orifice Meters………………………………………………………………..173 

0341.2 Venturi Meters ................................................................................................ 176 
0341.3 Nozzle Meters ................................................................................................. 178 
0341.4 Elbow Meters .................................................................................................. 179 
0341.5 Magnetic and Ultrasonic Meters..................................................................... 181 
0342 Measurements in Open Channels....................................................................... 181 
0342.1 Depth Measurements ...................................................................................... 183 
0342.2 Velocity Measurements .................................................................................. 183 

    0342.2.1 Propeller/ Paddle Wheel Meters………………………………………..….183 
    0342.2.2 Vortex Meter……………………………………………………………….183 
    0342.2.3 Doppler (Acoustic) Meters………………………………..……………….184 
    0342.2.4 Velocity Measurements with Floaters……………………………………..184 
    0342.2.5 Laser Doppler and Particle-Velocity Measurements………………………184 

0342.3 Sharp-crested Weirs ........................................................................................ 184 
0342.4 Broad-crested Weirs........................................................................................ 190 
0342.5 Submerged Weir Flow .................................................................................... 192 
0342.6 Flumes............................................................................................................. 194 

    0342.6.1 Long-throated Flumes...……………………………………………………194 

 4



EFH Chapter 3 Hydraulics                                                                           August 2009             

    0342.6.2 Parshall Flumes..…………………………………………………………...194 
0370 Hydraulic Modeling ............................................................................................... 195 

0371 Similarity Between Models and Prototypes....................................................... 195 
0372 Hydraulic Modeling in Enclosed Flows (Pipelines) .......................................... 197 
0373 Hydraulic Modeling in Open-Channel Flow ..................................................... 198 
0374 Limitations of Models………………………………………………………….199 

REFERENCES ............................................................................................................... 200 

List of Exhibits 
Exhibit 1 – Dimensions and units of measurement ........................................................ 202 
Exhibit 2 – Selected conversion factors for units of measurement................................. 203 
Exhibit 3 – The Greek alphabet ...................................................................................... 206 
Exhibit 4 – Physical properties of water ......................................................................... 207 
Exhibit 5 – Variation of atmospheric pressure with elevation........................................ 209 
Exhibit 6 – Pipe-system analysis for pump selection....………………………………..210  
Exhibit 7 – Culvert flow solutions using nomograms………………………………….212  
 
List of Tables 
Table 1. Basic units of measurement in the S.I. and E.S. systems ................................... 12 
Table 2. Manning’s resistance coefficients for open channel flow .................................. 68 
Table 3. Types of uniform flow in open channels. ........................................................... 75 
Table 4. Shape factors for sediment settling velocity ..................................................... 101 
Table 5. Values of Manning’s resistance coefficient for pipe ........................................ 119 
Table 6. Absolute roughness values for pipe materials .................................................. 121 
Table 7. Values of the Hazen-Williams coefficient........................................................ 127 
Table 8. Pipe entrance loss coefficients . ........................................................................ 132 
Table 9. Local loss coefficients for selected pipe fittings............................................... 133 
Table 10. Local head loss coefficients for a sudden pipe contraction. ........................... 143 
Table 11. Effect of neglecting local losses on an example pipeline system................... 145 
 
 
List of Figures 
Figure 1.  Schematic of Newton’s viscosity experiment .................................................. 16 
Figure 2.  Cavitation damage on the propeller of a Francis turbine. ................................ 19 
Figure 3.  Schematic of pressure measurement in a liquid. .............................................. 20 
Figure 4.  Pressures within a liquid at rest. ....................................................................... 22 
Figure 5.  Calculation of pressures at different depths. .................................................... 23 
Figure 6.  Simple manometer (piezometer) ...................................................................... 24 
Figure 7.  Piezometers on a horizontal pipe flow. ............................................................ 25 
Figure 8.  Piezometers near an orifice meter in a pipeline................................................ 26 
Figure 9.  U-tube manometer ............................................................................................ 26 
Figure 10.  U-tube manometer for flow measurement in a pipeline................................. 28 
Figure 11.  Schematic of manometric measurements at an orifice plate in a pipe. .......... 29 
Figure 12.  Deformation manometer (Bourdon manometer). ........................................... 30 
Figure 13.  Force on a submerged horizontal surface....................................................... 31 

 5



EFH Chapter 3 Hydraulics                                                                           August 2009             

Figure 14.  Point of application of a force on a submerged horizontal surface. ............... 31 
Figure 15.  Pressure distribution, force, and center of pressure on an inclined surface. .. 33 
Figure 16.  Pressure prism (a) and force location (b) for a vertical rectangular surface .. 35 
Figure 17.  Buoyancy and weight forces acting on a submerged body ............................ 37 
Figure 18.  Flow continuity in a pipe expansion............................................................... 41 
Figure 19.  Schematic of flow in branching pipelines. ..................................................... 42 
Figure 20.  Non-symmetric trapezoidal cross-section in an open channel flow............... 43 
Figure 21.  Contraction in a rectangular open channel. .................................................... 44 
Figure 22.  Rectangular open channel diversion............................................................... 45 
Figure 23.  Flow energies illustrated with a simple reservoir-sprinkler system ............... 46 
Figure 24.  Energy heads in pipe flow. ............................................................................. 47 
Figure 25.  Energy heads in open channel flow................................................................ 50 
Figure 26.  Sluice gate flow. ............................................................................................. 52 
Figure 27.  Schematic of uniform flow in open channels. ................................................ 57 
Figure 28.  Non-symmetric trapezoidal channel............................................................... 60 
Figure 29.  Channel cross-sections that can be derived from a non-symmetric trapezoidal 
cross-section...................................................................................................................... 61 
Figure 30.  Circular cross-section in open channel flow. ................................................. 63 
Figure 31.  Parabolic cross section………………………………...…………………….64 
Figure 32.  Specific energy curve for a trapezoidal open channel.................................... 71 
Figure 33.  Specific energy curve for a rectangular open channel.................................... 73 
Figure 34.  Relationship of cross-sectional area dA, flow depth d(d), and top width T ... 74 
Figure 35.  Types of uniform flow in open channels. ....................................................... 76 
Figure 36.  Hump at the bottom of a horizontal rectangular channel. .............................. 78 
Figure 37.  Forces and flow of momentum for sluice gate flow....................................... 81 
Figure 38.  Conjugate depths in the unit momentum function diagram for a rectangular 
open channel. .................................................................................................................... 84 
Figure 39.  Hydraulic jump produced by a stilling basin at the base of a spillway. ......... 85 
Figure 40.  Hydraulic jump observed at the foot  of a model spillway (Courtesy of the 
Utah Water Research Laboratory). ................................................................................... 86 
Figure 41.  Forces and flow of momentum for a hydraulic jump. .................................... 86 
Figure 42.  Hydraulic jump over a baffle block................................................................ 89 
Figure 43.  Varying flow from a reservoir leading to uniform flow in an open channel.. 90 
Figure 44.  Gradually-varied flow (GVF) near an overfall............................................... 92 
Figure 45.  Gradually-varied flow (GVF) produced by a weir. ........................................ 92 
Figure 46.  Classification of gradually-varied flow (GVF) .............................................. 93 
Figure 47.  Gradually-varied flow (GVF) curves in a mild-slope open channel with a 
sluice gate and overfall. .................................................................................................... 93 
Figure 48.  Shield’s diagram for determining the threshold of sediment motion in open 
channel flow.................................................................................................................... 102 
Figure 49.  Channel bed degradation downstream of a dam due to reduction in sediment 
supply.............................................................................................................................. 109 
Figure 50.  Pipe Flow calculations with the USDA-NRCS Hydraulics Formula. .......... 118 
Figure 51.  Discharge from a pipe into a reservoir. ........................................................ 131 
Figure 52.  Entrance loss coefficients for typical pipe entrance shapes ......................... 132 

 6



EFH Chapter 3 Hydraulics                                                                           August 2009             

Figure 53.  Solution for pipe flow with entrance loss using USDA-NRCS Hydraulics 
Formula........................................................................................................................... 133 
Figure 54.  Schematic of pipe flow between two reservoirs........................................... 134 
Figure 55.  Solution to pipe flow including all local losses using USDA-NRCS Hydraulics 
Formula........................................................................................................................... 137 
Figure 56.  Pump discharge-head graph. ........................................................................ 139 
Figure 57.  System schematic showing motor M, electric supply E, and pump P.......... 140 
Figure 58.  Three pipelines in series connecting two reservoirs..................................... 142 
Figure 59.  Three pipelines in parallel connecting two reservoirs.................................. 146 
Figure 60.  Three pipelines converging to a single delivery point.................................. 148 
Figure 61.  Location and dimensions of air vent chamber near a water intake. ............. 154 
Figure 62.  Schematic of pump-pipeline system protected with a surge chamber. ........ 158 
Figure 63.  Siphon conduit connecting two reservoirs. .................................................. 161 
Figure 64.  Flow regimes for submerged inlet flow in culverts...................................... 165 
Figure 65.  Central pivot irrigation system near Grace, Idaho........................................ 171 
Figure 66.  Schematic of a sprinkler system layout. ....................................................... 172 
Figure 67.  Schematic of flow through an orifice plate in a pipe…………………….....173 
Figure 68.  Contraction, velocity, and discharge coefficients for flow through orifices: (a) 
sharp thick wall, (b) rounded thick wall, (c) chiseled thin wall, (d) sharp thin wall. ..... 174 
Figure 69.  Schematic of orifice plate............................................................................. 175 
Figure 70.  Plexiglas pipe with an orifice meter and piezometric tubes, used in the 
laboratory to demonstrate orifice flow............................................................................ 175 
Figure 71.  Schematic of a Venturi meter ....................................................................... 176 
Figure 72.  Plexiglas Venturi meter with piezometric tubes to demonstrate flow through 
the meter.......................................................................................................................... 177 
Figure 73.  Venturi meter installed in a 4-inch pipeline, with manometer lines attached at 
the upstream end and at the throat of the meter. ............................................................. 177 
Figure 74.  Schematic of a nozzle meter......................................................................... 178 
Figure 75.  Schematic of an elbow meter. ...................................................................... 180 
Figure 76.  Values of the discharge can be interpolated graphically from the rating curve 
of a given device. ............................................................................................................ 181 
Figure 77.  Depth gage showing water surface elevation. .............................................. 182 
Figure 78.  Point gage in laboratory flume with Vernier scale reading of 23.7.............. 183 
Figure 79.  Suppressed sharp-crested weir in a rectangular channel. ............................. 185 
Figure 80.  Contracted sharp-crested weir in a rectangular channel............................... 185 
Figure 81.  Sharp-crested weir in operation (USDA). .................................................... 186 
Figure 82.  Contracted rectangular weir with n = 1 or n = 2 contractions. .................... 187 
Figure 83.  Contracted weir in a laboratory flume.......................................................... 188 
Figure 84.  Cipoletti weir schematic. .............................................................................. 188 
Figure 85.  Schematic of a triangular or v-notch weir. ................................................... 189 
Figure 86.  V-notch, or triangular, weir in a laboratory flume. ...................................... 189 
Figure 87.  Schematic of flow over a broad-crested weir. .............................................. 190 
Figure 88.  Submerged weir flow. .................................................................................. 192 
Figure 89.  Coefficient of submergence for sharp-crested weirs. ................................... 193 
Figure 90.  Model and prototype quantities. ................................................................... 195 

 7



EFH Chapter 3 Hydraulics                                                                           August 2009             

Figure 91.  Prototype and model of an ogee spillway (courtesy of the Utah Water 
Research Laboratory, Utah State University). ................................................................ 196 
Figure 92.  Riprap hydraulic model (source: USDA - ARS).......................................... 199 
 
 
 
List of Examples 
Example 1 – Pressure at depth in water ............................................................................ 23 
Example 2 – Hydrostatic force on horizontal area............................................................ 32 
Example 3 – Hydrostatic force on inclined area .............................................................. 34 
Example 4 – Hydrostatic force on vertical gate................................................................ 36 
Example 5 – Buoyancy force calculation – depth of a loaded barge................................ 37 
Example 6 – Buoyancy force calculation – flotation safety of CMP inlet ....................... 38 
Example 7– Equation of continuity in a pipe - discharge and velocity calculation.......... 41 
Example 8 – Equation of continuity – velocity and discharge calculation in branching 
pipeline.............................................................................................................................. 43 
Example 9 – Equation of continuity – velocity in a trapezoidal open-channel cross-
section ............................................................................................................................... 44 
Example 10 – Equation of continuity – channel width reduction..................................... 44 
Example 11 – Equation of continuity – rectangular open channel diversion ................... 45 
Example 12 – Calculation of pressure, velocity, piezometric and total head ................... 48 
Example 13 – Calculation of total head............................................................................ 49 
Example 14 – Velocity head, specific energy, and total head in open-channel flow ....... 50 
Example 15 – Bernoulli’s principle applied to sluice gate flow....................................... 52 
Example 16 – Energy equation in pipelines ..................................................................... 53 
Example 17 – Energy equation in open channel flow ...................................................... 54 
Example 18 – Hydraulic and energy gradients in pipe flow............................................. 55 
Example 19 – Hydraulic and energy gradients in open channel flow .............................. 56 
Example 20 – Shear stress in uniform open-channel flow ............................................... 58 
Example 21 – Velocity calculation in open-channel flow using Chezy’s equation ......... 59 
Example 22 – Geometric characteristics of a non-symmetric trapezoidal cross-section . 60 
Example 23 – Hydraulic radius for wide rectangular channel.......................................... 62 
Example 24 – Geometric characteristics of a symmetric trapezoidal cross-section in open 
channels............................................................................................................................. 62 
Example 25 – Geometric characteristics of a circular cross-section in open channels .... 64 
Example 26 – Geometric characteristics of a parabolic cross-section.............................. 64 
Example 27 – Trapezoidal channel solution using USDA-NRCS Hydraulics Formula 
program............................................................................................................................. 68 
Example 28 – Circular channel solution using USDA-NRCS Hydraulics Formula 
program............................................................................................................................. 69 
Example 29 – Parabolic channel solution using USDA-NRCS Hydraulics Formula 
program............................................................................................................................. 69 
Example 30 – Normal depth in a wide channel ................................................................ 70 
Example 31 – Specific energy diagram for a rectangular channel cross-section ............. 72 
Example 32 – Critical flow depth in a rectangular channel.............................................. 76 

 8



EFH Chapter 3 Hydraulics                                                                           August 2009             

Example 33 – Critical slope in uniform open-channel flow with rectangular cross-section
........................................................................................................................................... 77 
Example 34 – Change in channel bed elevation in a rectangular channel........................ 79 
Example 35 – Calculation of the Froude number in a rectangular channel...................... 80 
Example 36 – Rating curve for a broad crested-weir ....................................................... 81 
Example 37 – Momentum function diagram for a rectangular channel ........................... 83 
Example 38 – Calculation of force on sluice gate ............................................................ 84 
Example 39 – Discharge, head loss, and length of a hydraulic jump in a rectangular 
channel .............................................................................................................................. 88 
Example 40 – Flow depth, head loss, and length of hydraulic jump in a rectangular 
channel .............................................................................................................................. 88 
Example 41 – Calculation of force on an obstacle producing a hydraulic jump in a 
rectangular channel ........................................................................................................... 89 
Example 42 – Gradually-varied flow calculation in a rectangular channel...................... 95 
Example 43 – Sediment size data analysis ....................................................................... 97 
Example 44 – Determining settling velocity of spherical sediments.............................. 100 
Example 45 – Determination of settling velocity for non-spherical sediments.............. 101 
Example 46 – Sediment motion threshold analysis using Shield’s diagram .................. 103 
Example 47 – Suspended sediment discharge calculation.............................................. 105 
Example 48 – Bed sediment load rate calculation .......................................................... 108 
Example 49 – Bed aggradation ....................................................................................... 111 
Example 50 – Bed degradation downstream of dam ...................................................... 112 
Example 51 – Bed degradation with constant downstream elevation ............................ 113 
Example 52 – Pipeline discharge calculation using Manning’s equation....................... 117 
Example 53 – Pipeline discharge calculation using the USDA-NRCS Hydraulics Formula 
software........................................................................................................................... 117 
Example 54 – Flow velocity in a helical corrugated metal pipe using Manning’s equation
......................................................................................................................................... 119 
Example 55 – Head loss in a riveted and spiral steel pipe using Manning’s equation ... 119 
Example 56 – Velocity in pipeline draining a reservoir – Manning’s equation ............. 120 
Example 57 – Reynolds number used to classify pipe flow ........................................... 122 
Example 58 – Pipe flow solutions with the Darcy-Weisbach equation.......................... 124 
Example 59 – Flow in pipeline draining a reservoir – Darcy-Weisbach equation ......... 125 
Example 60 – Pipe velocity calculation using the Hazen-Williams formula ................. 128 
Example 61 – Pipe discharge calculation using the Hazen-Williams formula............... 129 
Example 62 – Head loss calculation using the Hazen-Williams formula....................... 129 
Example 63 – Diameter calculation using the Hazen-Williams formula ....................... 129 
Example 64 – Flow in pipeline draining a reservoir – Hazen-Williams formula........... 129 
Example 65 – Pipe flow calculation including local losses using the USDA-NRCS 
Hydraulics Formula software ......................................................................................... 133 
Example 66 – Pipe flow between two reservoirs including local losses – Manning’s 
equation........................................................................................................................... 134 
Example 67 – Pipe flow calculation including local losses using USDA-NRCS Hydraulics 
Formula........................................................................................................................... 137 
Example 68 – Pump head and discharge analysis .......................................................... 138 
Example 69 – Pump power and efficiency calculation................................................... 141 

 9



EFH Chapter 3 Hydraulics                                                                           August 2009             

Example 70 – Pipes in series using the Darcy-Weisbach equation ................................ 144 
Example 71 – Pipes in series using the Manning’s equation.......................................... 145 
Example 72 – Pipes in series using the Hazen-Williams formula .................................. 145 
Example 73 – Pipes in parallel using the Manning’s equation....................................... 146 
Example 74 – Pipes in parallel using the Hazen-Williams formula ............................... 147 
Example 75 – Converging pipelines using Manning’s equation .................................... 148 
Example 76 – Converging pipelines using Hazen-Williams formula ............................ 149 
Example 77 – Air valve sizing........................................................................................ 151 
Example 78 – Air vent chamber sizing........................................................................... 155 
Example 79 – Pressure relief valve selection…………………………...……………...156 
Example 80 – Pressure reducing valve selection…...……...…………………………...157 
Example 81 – Surge chamber calculation....................................................................... 158 
Example 82 – Pressure increase with sudden closing of a valve.................................... 160 
Example 83 – Cavitation at high point of a siphon......................................................... 161 
Example 84 – Circular culvert calculation with design under inlet control ................... 166 
Example 85 – Circular culvert sizing.............................................................................. 168 
Example 86 – Culvert discharge calculation .................................................................. 169 
Example 87 – Flow discharge through an orifice meter ................................................. 176 
Example 88 – Flow discharge through a Venturi meter ................................................. 177 
Example 89 – Flow discharge through a nozzle meter ................................................... 179 
Example 90 – Flow discharge through an elbow meter.................................................. 180 
Example 91 – Flow velocity calculation using the float method.................................... 184 
Example 92 – Discharge over a suppressed rectangular weir......................................... 186 
Example 93 – Discharge over a suppressed rectangular weir......................................... 187 
Example 94 – Discharge over a contracted weir ............................................................ 187 
Example 95 – Discharge over a Cipoletti weir ............................................................... 189 
Example 96 – Discharge over a triangular weir.............................................................. 190 
Example 97 – Discharge over a broad-crested weir – critical depth measured .............. 191 
Example 98 – Discharge over a broad-crested weir – head measured ........................... 191 
Example 99 – Discharge over a submerged sharp-crested weir ..................................... 193 
Example 100 – Discharge through a Parshall flume....................................................... 195 
Example 101 – Geometric similarity calculations .......................................................... 196 
Example 102 – Control valve model calculation (pressurized flow).............................. 197 
Example 103 – Stilling basin model calculation (free-surface flow) ............................. 198 
 
 
 
 
 
 
 
 
 
 
 
 

 10



EFH Chapter 3 Hydraulics                                                                           August 2009             

0300 Introduction 
This chapter presents the hydraulic principles that apply to the design and operation of 
soil and water conservation measures.  The chapter contains sections on dimensions and 
units, principles of water at rest (hydrostatics), and principles of water in motion 
(hydrokinetics). It also discusses the application of these principles to flow of water in 
pipes and open channels. The chapter also presents the more common methods of 
measuring flow of water in open channels and pipes. 
 
0301 Dimensions and Units 
The word “dimensions” refers to physical quantities involved in describing a physical 
system.  The basic dimensions of length (L), time (T), and mass (M) can be selected.  In 
the analysis of hydraulic problems many derived quantities are used that combine these 
basic dimensions.  Some of these derived quantities are listed next: 
 

 Velocity:    V = L/T  (velocity = length/time) 
 Acceleration:   a = V/T = L/T2 (acceleration = velocity/time) 
 Force:   F = Ma = ML/T2 (force = mass  acceleration) 
 Momentum:  I = MV = ML/T (momentum = mass  velocity) 
 Work or energy:  E = FL = ML2/T2 (work = force  length) 
 Power:   P = W/T = ML2/T3 (power = work/time) 

 
The definition of force given above, referred to as Newton’s second law of motion, 
indicates that the force F required to provide an acceleration to a body of mass m is given 
by F = m a.  In terms of the basic dimensions (L, T, M), a force has dimensions of 
ML/T2, as indicated above.  Sometimes, force (F) is used as a basic dimension together 
with L and T, and mass (M) is considered a derived quantity.  In such case, the basic 
dimensions are (L, T, F) and mass has dimensions of M = FT2/L.   
 
Velocity and acceleration have the same dimensions when either mass or force is 
considered a basic dimendsion. Using (L, T, and F) as basic dimensions, the following 
derived quantities are written: 
 
 Momentum:  I = MV = (FT2/L)(L/T) = FT 
 Work or energy:  E = FL 
 Power:   P = W/T = FL/T  
 
The basic dimensions and the derived quantities referred to above are described in terms 
of units of measurement.  There are two commonly used systems of units in modern 
engineering practice: the International System (referred to as S.I., or Systeme 
Internationale, in French) and the English System (referred to as E.S., and also known as 
the Imperial System of units).  The International System uses length, time, and mass 
(L,T,M) as the basic dimensions, while the English System uses length, time, and force 
(L,T.F) as the basic dimensions.  The following table shows the basic units in both 
systems: 
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Table 1.   Basic units of measurement in the S.I. and E.S. systems 
 

System of units Length Time Mass Force 
International System (S.I.) meter (m) second (s) kilogram (kg) -- 
English System (E.S.) foot (ft) second (s) -- pound (lb) 
 

Besides the foot, the inch (in), the yard (yd), and the mile (mi) are commonly-used units 
of length in the E.S.  These units are defined as follows: 
 

1 in = 1/12 ft, or 1 ft = 12 in 
 

1 yd = 3 ft 
 

1 mi = 5280 ft 
 
To define the unit of force in the S.I. or the unit of mass in the E.S. it is necessary to use 
the acceleration of gravity (g), a quantity that is essentially constant on the surface of the 
Earth and has the value  
 

g = 32.2 ft/s2 =9.806 m/s2 
 
 
With this acceleration we can define the weight of a given mass M as: 
 

 Weight:   W = Mg   (weight = mass  gravity) 
 
This relationship allows the definition of a unit of force in the S.I., the newton (N), defined as: 
 

1 N = (1 kg) (1 m/s2) = 1 kgm/s2 
 
Similarly, by using the expression for mass in terms of weight: 
 

 Mass:   M = W/g 
 
The unit of mass in the E.S., the slug, can be defined as: 
 

1 slug = (1 lb)/ (1 ft/s2) = 1 lbs2/ft 
 
In the United States, the English System is the most commonly used system of units.  Therefore, 
most of the problems presented in this chapter are worked using units of the English System.  The 
following are basic units of the English System for the derived quantities presented earlier: 
 

 Velocity:    1 ft/s = 1 fps 
 Acceleration:   1 ft/s2 
 Mass:   1 slug = 1 lbs2/ft. 
 Momentum:  1 slugft/s = 1 slugfps = (1 lbs2/ft)(1 ft/s) = 1 lbs 
 Work or energy:  1 lbft  
 Power:   1 lbft/s 
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The basic units of the International System for the derived quantities are as follows: 
 

 Velocity:    1 m/s  
 Acceleration:   1 m/s2 
 Force:   1 N  
 Momentum:  1 Nm/s 
 Work or energy:  1 J = 1 Nm/s2 (joule) 
 Power:   1 W = 1 J/s (watt) 

 
 
The International System of units uses also a number of prefixes to indicate decimal 
fractions or multiples of a given unit.  Some of those prefixes are listed below: 

 
 Kilo (k)  103 = 1 thousand 
 Deci (d)  10-1 = 0.1 = one tenth 
 Centi (c)  10-2 = 0.01 = one hundredth 
 Milli (m)  10-3 = 0.001 = one thousandth 

 
For example, a commonly used unit for measuring travel distance is the kilometer (1 km 
= 103 m = 1000 m), while small pipe diameters could be measured in centimeters (1 cm = 
10-2 m = 0.01 m). 
 
The units of area and volume (e.g., for the measurement of flows) are also of interest in hydraulic 
applications.  The basic units of area and volume in the E.S. are the square foot (1 ft2) and the 
cubic foot (1 ft3); however, other units of area and volume are also used: 
 

1 acre (Ac) = 43560 ft2 

 
1 acre-ft (Ac-ft) = 43560 ft3 

 
1 ft3 = 7.48 gallons (gal) 

 
A derived quantity commonly used in hydraulics is the discharge or flow rate, Q, defined as vol/T 
and can be calculated by multiplying velocity, V, times flow area, A, as: 
 

 Discharge or flow rate,   Q= vol/T = VA                                                       
 
The basic unit of discharge in the E.S. is 1 ft3/s commonly referred to as 1 cfs (cubic feet per 
second).  As an alternative, the discharge in large rivers is sometimes measured in acre-ft/day. 
 
While the basic units of area and volume in the S.I. are the square meter and cubic meter, 
other units are also used: 
 

1 hectare (ha) = 10000 m2 
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1 m3 = 1000 liters (l) 
 
Exhibit 1 provides a list of basic dimensions and units for the English (E.S.) and 
International (S.I.) Systems of units. 
 
0302 Unit Conversions 
Unit conversions are straightforward if the conversion factors are known.  Some 
conversion factors were provided in the previous section.  For example, given that 1 ft3 = 
7.48 gal, 1 min = 60 s, and that a discharge is reported to be 0.5 cfs (0.5 ft3/s), determine the value 
of the discharge in gallons per minute (gpm).  This unit conversion can be accomplished as 
follows: 
 












min

6048.7
5.0

3

3 s

tf

gal

s

tf
 

 
gpmgpm 4.2246048.75.0   

 
Exhibit 2 provides a list of commonly-used conversion factors for the English (E.S.) and 
International (S.I.) System of units.  A number of unit conversion programs and 
spreadsheets are available for quick unit conversions.   
 
0303 Dimensional Homogeneity in Equations 
In the analysis of hydraulic systems it is necessary to use a number of equations.  Most 
equations are dimensionally homogeneous, meaning that the dimensions of both sides of 
the equation are the same.  Equations that define a derived quantity (for example, 
Newton’s second law of motion, F = Ma), are, by definition, dimensionally 
homogeneous.  For other equations, replacing the dimensions of the different variables 
using either length, time, and mass (L, T, M) or length, time, and force (L, T, F), will 
verify the dimensional homogeneity of the expression.   
 
The following example verifies the dimensional homogeneity of the equation used to 
define power in pipe flow (see section 0330 – Pipe Flow).  The power P required to 
transport a discharge Q of water through a pipeline, with an energy head loss H, is given 
by:  

P = QH                                                   [Eq.  1] 
 
where  is the specific weight of water.  Exhibit 3 presents the letters of the Greek 
alphabet, indicating those most commonly used in hydraulic equations.  The specific 
weight of any material is defined as the weight per unit volume of the material: 
 

Vol

W
                                                      [Eq.  2] 
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where W represents weight (in the English system, the pound, lb, is commonly used to 
measure weight), and Vol represents volume.  In dimensional terms, using (L, T, and F) 
as basic dimensions, one can write: 
 

  3
3][

][  FL
L

F

Vol

W  

 
while [Q] = L3/T = L3T-1, and [H] = L.   Thus, from the equation defining power, one can 
write: 
 

[P] = [] [Q] [H] = (FL-3) ( L3T-1) (L) = FLT-1 
 
Exhibit 1 shows that the dimensions of [P] = FLT-1; thus, the equation P = QH is shown 
to be dimensionally homogeneous. 
 
Manning’s equation (see section 0321.2) illustrates an equation that is not dimensionally 
homogeneous.  The equation is given by: 
 

2/1
0

3/2 SR
n

C
V u                                            [Eq.  3] 

 
where V is the velocity, Cu is a constant, R is the hydraulic radius and has dimensions of 
length, and So is the channel bed longitudinal slope and is a dimensionless quantity, and n 
is the Manning’s resistance coefficient, another dimensionless quantity.   
 
From the equation, one may obtain the dimensions of V as: 
 

[V] =  L2/3 
 
However, from Exhibit 1, [V] = LT-1.  Thus, Manning’s equation is not dimensionally 
homogeneous. Although not dimensionally homogeneous, the empirical Manning’s 
equation has proven to be very successful in modeling flow in open channels and 
pipelines.   
 
0304 Physical Properties of Water 
Exhibit 4 presents tables with physical water properties (values may be interpolated for 
different temperatures) defined as follows:  
 
Density is the mass per unit volume:    
 

Vol

M
                                                      [Eq.  4] 

 
Units of density in the S.I. are kg/m3, while in the E.S., they are slug/ft3.  
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Specific Weight is weight per unit volume (see equation 2): 
 

Vol

W
  

 
Units of specific weight in the S.I. are N/m3, while in the E.S., they are lb/ft3 or pcf 
(pounds per cubic feet). 
 
Because weight is defined as W = Mg, where g is the acceleration of gravity, one can also 
write  = (W/Vol) = (Mg/Vol) = (M/Vol)g = g:  
 

g                                                                   [Eq.  5] 

 
Specific gravity is the ratio of the density of any fluid to that of water at 39.2oF (4oC).  
Water density tends to increase with decreasing temperature to a maximum value at 
39.2oF (4oC).  As the temperature decreases further, the density of water decreases until 
the water turns into ice at 32oF or 0oC.  Referring to the density of water at 39.2oF or 4oC 
as w = 1000 kg/m3 = 1.94 slug/ft3, or to its corresponding specific weight as w = 9806 
N/m3 = 62.4 lb/ft3, the specific gravity of any fluid of density  or specific weight , is 
defined as: 
 

ww

S






                                                              [Eq.  6] 

 
For example, mercury (chemical symbol = Hg), a liquid metal often used in pressure 
measurements in hydraulic laboratories, has a specific weight,  = 846.14 lb/ft3.   
Therefore, the specific gravity of mercury is 
 

6.13
/4.62

/16.846
3

3


ftlb

ftlb
S

w


 

 
Viscosity is a property that measures the ability of water to resist shear deformation.  The 
definition of viscosity can be understood by referring to an experiment that was first 
conducted by Newton, in which a moving wall is driven at a constant velocity, V, through 
a quiescent water tank.  A schematic top view is shown below: 
 

 
Figure 1.  Schematic of Newton’s viscosity experiment 

 
Measurements indicate that the local velocity varies linearly from zero at the fixed wall to 
V at the moving wall.  Let F represent the force required to pull the moving wall, and A 
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be the area of the wall in contact with the fluid.  The shear stress on the moving wall is 
defined as: 
 

A

F
                                                                     [Eq.  7] 

 
Newton discovered that the shear stress is related to the velocity V and to the length H in 
the tank through the following relationship: 
 

H

V                                                                  [Eq.  8] 

 
In this equation, the quantity  is referred to as the absolute or dynamic viscosity of 
water.  The kinematic viscosity is defined by: 
 


                                                                  [Eq.  9] 

 
The units of absolute or dynamic viscosity are Ns/m2

 = kg/(ms) in the S.I., and lbs/ft2 in 
the E.S.  And, kinematic viscosity units are m2/s in the S.I. and ft2/s in the E.S.  Notice 
that the units of kinematic viscosity are those of area per unit time.  The dimensions of 
kinematic viscosity are [] = L2T-1, i.e., they involve only kinematic quantities (area, 
which is length squared, and time), hence the name kinematic viscosity. 
 
For example, at a temperature of 70oF, the kinematic viscosity of water is  = 1.059x10-5 
ft2/s, and its specific weight is  = 62.3 lb/ft3.  To determine the absolute or dynamic 
viscosity of water at that temperature, we use the formulas /g, and /g) 
= /g, where g = 32.2 ft/s2:  
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5
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







 



  

 
In the technical literature there are references to two old units of viscosity, the poise ( P), 
a unit of dynamic viscosity, and the stokes ( St), a unit of kinematic viscosity.   The 
conversion factors for these units into units of the E.S. are: 
 

1 P = 2.088510-3 lbs/ft2 
 

1 St = 1.07610-3 ft2/s 
 
In pipe flow, viscosity is used to define a quantity known as the Reynolds number:  
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
 VDVD

Re                                                          [Eq.  10] 

 
For example, to determine the Reynolds number in pipe flow in which water at 80oF is 
flowing at a velocity V = 0.3 ft/s through a pipeline of 6-inch diameter (D = 6 in = 6/12 ft 
= 0.5 ft), the value of the kinematic viscosity from Exhibit 4 is = 9.3010-6 ft2/s.  The 
Reynolds number is calculated as: 
 

 
03.16129

1030.9

5.03.0

2
6
























s

ft

ft
s

ft
VD

Re 
 

 
The Reynolds number is a dimensionless number, i.e., a number without units or 
dimensions. 

 
Vapor pressure and cavitation. Vapor pressure is the ambient (air) pressure at which 
water boils.  For example, at mean sea level, where the atmospheric pressure is 14.697 
psi (pounds per square inch), water boils at 212oF.  However, at an elevation of 5000 ft 
(1524 m), where the atmospheric pressure is 12.23 psi, water boils at a temperature of 
approximately 203oF.  Thus, at 212oF, the vapor pressure of water is 14.697 psi, whereas 
at 203oF, the vapor pressure of water is 12.23 psi.  Exhibit 4 provides a table of vapor 
pressures for water at different temperatures.  Exhibit 5 provides a table of the 
atmospheric pressure variation with elevation. 
 
 
In some pipe flows or within valves and other appurtenances, the local pressure may fall 
below that of the vapor pressure of water at a given temperature.  In such locations it is 
possible to develop small vapor cavities that, when swept by the flow towards locations 
of higher pressure, may collapse onto themselves generating such force in the process 
that it may chip away at the pipe or valve walls.  This condition is known as cavitation 
(see section 0335); it should be avoided to prevent damage to pipes or appurtenances.  
Figure 2, below, shows cavitation damage on the propeller of a Francis turbine. 
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Figure 2. Cavitation damage on the propeller of a Francis turbine. 

 
Modulus of elasticity and water hammer.  Bulk modulus of elasticity is a measure of 
resistance of water to volume change under effect of pressure.  Water and liquids, in 
general, are referred to as incompressible fluids because they experience very small 
volume changes when subject to very large pressure changes.  Gases, on the other hand, 
have large volume changes when pressure changes, and are, therefore, referred to as 
compressible fluids.  For any material, the bulk modulus of elasticity is defined as: 
 

VV

p
E

/


                                                                  [Eq.  11] 

 
where p is the change in pressure applied to the material with initial volume V, and V 
is the resulting change in volume.  The negative sign in the equation signifies that an 
increase in pressure (positive p) will produce a decrease in volume (negative V).  
Thus, the bulk modulus of elasticity can be defined as the change in pressure per unit 
change in volume of a fluid. 
 
For example, at a temperature of 60oF, the modulus of elasticity of water is E = 311000 
psi = 44784000 psf.  If we wanted to reduce the volume of a water mass by V = - 0.1 
ft3, and given that the original volume is V = 1 ft3, the equation above indicates that the 
required pressure increase is extremely large, namely: 
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This calculation illustrates that water (and liquids, in general) are, for most practical 
purposes, incompressible.  The incompressibility of water is a factor in producing a 
phenomenon known as water hammer (see section 0334).   
 
 
0310 Hydrostatics 
Hydrostatics refers to the study of water (and other liquids) at rest. Such is the case, for 
example, of water contained in a storage tank with no flow in or out.   Subjects of interest 
in hydrostatics include determination of pressures in a fluid, instruments for measuring 
pressure, calculation of forces on submerged surfaces (e.g., on gates or tank walls), and  
study of buoyancy. 
 
0311 Hydrostatic Pressure Relationships 
Pressure is defined as the force per unit area that a fluid (liquid or gas) exerts on a surface 
submerged in the fluid.   The pressures discussed here are those within a body of water at 
rest.  Consider, for example, a water tank as shown in the figure below.  
 

 
Figure 3.  Schematic of pressure measurement in a liquid. 

 
A small probe of area A is introduced at a point in the tank as shown.  If the force that the 
water exerts on the probe tip is F, then the pressure at that point is 

 
 

A

F
p                                                       [Eq.  12] 

 
 

Changing the orientation of the probe’s tip at the same point, does not change the force 
exerted by the water on the tip.  Thus, the pressure at any given point does not change 
with the orientation of the surface acted upon.  Pressure is said to be isotropic, i.e., it is 
independent of the orientation in which it is measured.    
 
 The following table lists some of the most commonly used units of pressure in the 
English System (E.S.) and International System (S.I.).  Notice that pressure can also be 
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expressed in terms of the height of a liquid column as shown below.  In this table, H20 
and Hg are the chemical symbols of water and mercury, respectively. 
 
 
 

Unit of Pressure  Definition or Equivalent__________ 
Basic Units 
psf     1 lb/ft2  =  0.006944 psi = 47.88 Pa 
psi    1 lb/in2  = 144 psf = 6894.76 Pa 
Pa (Pascal)   1 N/m2  = 0.02088 psf = 0.000145 psi 

 
Other Units 
kPa (kilo Pascal)  1,000 Pa 
MPa (mega Pascal)  1,000 kPa = 1,000,000 Pa 
bar    14.50 psi = 100,000 Pa 
mb (millibar)              0.001 bar = 0.014504 psi = 100 Pa 
atm (atmosphere)  14.7 psi = 101,325 Pa 

 
Height of Liquid Column 
1 m H20              1.4209 psi = 9796.85 Pa  
1 ft H20   0.4331 psi = 2986.08 Pa 
1 in H20   0.03609 psi = 248.84 Pa 
1 mm Hg   0.01934 psi = 133.32 Pa 
1 in Hg   0.4912 psi = 3,386.39 Pa 
_______________________________________________________ 
 

 
Pressure, within a liquid at rest, increases linearly with depth.  Referring to Figure 4, if 
the pressure at elevation z0 is known to be p0, then the pressure p at elevation z, is given 
by the hydrostatic law: 
 

p = p0 + z 
 
where  is the specific weight of the liquid, and z = z-z0 is the difference in elevation of 
the two points of interest.  The elevations z and z0 are measured from any common 
horizontal level or datum.   
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Figure 4.  Pressures within a liquid at rest. 

 
Atmospheric pressure refers to the pressure exerted by the weight of the air in the 
atmosphere.   As there is greater weight of air above lower than higher levels on the 
surface of the earth, atmospheric pressure decreases as elevation increases.  Exhibit 5 
shows the typical values of atmospheric pressure at different elevations above mean sea 
level.  Atmospheric pressure is measured with an instrument called a barometer.  Typical 
values at mean sea level and at a temperature of 59oF (15oC) are  
 

patm = 1 atm = 2116.22 psf  = 14.70 psi  = 101.33 kPa 
 

patm =  760 mmHg  =  407.19 in H2O  = 29.92  in Hg 
 
Absolute pressure and gage pressure.  Absolute pressure refers to the pressure measured 
with a zero value corresponding to a perfect vacuum, i.e., the total absence of matter in a 
volume.  Absolute pressure, therefore, is always a positive quantity.  Barometric pressure 
is an example of absolute pressure.  To emphasize that a certain quantity is reported in 
units of absolute pressure, sometimes ”a” or ”abs” is added to the units of pressure.  For 
example, atmospheric pressure is written as: 
 

patm = 2116.22 psfa = 14.70 psia = 101.33 kPa-abs 
 

patm =  760 mmHg-abs = 407.19 in H2O-abs  = 29.92  in Hg-abs 
 
On the other hand, when measuring pressure with manometers (see next section), it is 
possible to shift the zero value of the scale to the level of atmospheric pressure.  Thus, in 
this gage pressure scale, pressures above atmospheric will be positive, while those below 
atmospheric will be negative.   
 
Absolute and gage pressures are related by the following equation: 
 

pabs = pgage + patm                                                                     [Eq.  13] 
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For example, if the atmospheric pressure is patm = 13.5 psi at a given location, and if a 
pressure gage on a pipe reads pgage = -12 psi, then the corresponding absolute pressure 
will be: 
 

pabs = pgage + patm = -12 psi + 13.5 psi = 1.5 psi 
 
Gage pressure distribution in liquids.  Consider a tank open to the atmosphere.  The gage 
pressure at the free surface of the tank would be zero, by definition.   The gage pressure 
at any point located at a depth h below the free surface will be given by 
 

pgage = 0 + h = h                                         [Eq.  14] 
 
If the tank is closed and the free surface is pressurized at pressure ps, then the pressure at 
a point at depth h below the free surface will be subject to a pressure given by 
 

p = ps + h 
 
The pressure p, calculated above, would be an absolute or a gage pressure depending on 
whether ps is given as an absolute or gage pressure, respectively. 
 
Example 1 – Pressure at depth in water 
As an example, consider the water contained in a reservoir to a depth of 20-ft, as 
illustrated in Figure 5 below. 
 
 
 
 

 
 

Figure 5.  Calculation of pressures at different depths. 
 
Calculating the pressure at points 1, 2, and 3, located at elevations z1 = 15 ft, z2 = 10 ft, 
and z3 = 5 ft, measured from the reservoir’s bottom, requires that the water depths be 
calculated first: 
 

h1 = 20 ft – z1 = 20 ft – 15 ft = 5 ft 
 

h2 = 20 ft – z2 = 20 ft – 10 ft = 10 ft 
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h3

 = 20 ft – z3 = 20 ft – 5 ft = 15 ft 
 
Then, using  = 62.4 lb/ft3 for the specific weight of water, the corresponding (gage) 
pressures are: 
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0311.1 Piezometers and Manometers 

Manometers are instruments used in the measurement of pressure.  The simplest 
manometer consists of a u-tube with a leg attached to the point where the pressure will be 
measured, and the other leg open to the atmosphere.  Such a manometer is illustrated in 
Figure 6. 
 

 

 
 

Figure 6. Simple manometer (piezometer) 
 
The circle centered at B may represent, for example, the cross-section of a flowing pipe.  
The elevation of point A (open to the atmosphere) with respect of the pipe centerline B is 
equal to h.  Suppose that the liquid (e.g., water) in the pipe and manometer has a 
specific weight , then, according to the hydrostatic law, the pressure at B is given by: 
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pB = pA + h 
 
If we use gage pressure to report our result, then we can take pA = 0, and the pressure at 
the pipe centerline will be simply:  
 

pB = h 
 
In pipeline flow we are often interested in determining the so-called piezometric head of 
the flow at a given location.   The piezometric head, as illustrated in Figure 6, above, is 
the sum of the pressure head (h = pB/) plus the elevation of the pipe centerline zB.  
Thus, a manometer, as the one illustrated above, is also known as a piezometer, for it 
shows the piezometric head in a pipe flow.  
 
In many cases, piezometers are simply vertical tubes attached to the top of the pipeline, 
as illustrated in the figure below. 
 
 

 
 

Figure 7. Piezometers on a horizontal pipe flow. 
 
The piezometers in Figure 7 above show the location of the hydraulic grade line (HGL), 
which, in a horizontal pipeline, illustrates the decrease in pressure along the pipeline in 
the direction of the flow.  The piezometers in the figure show that the piezometric head 
decreases from A to B to C, thus, hA > hB > hC.  The centerline elevation of points A, B, 
and C is the same, i.e., zA = zB = zC, therefore, the pressure heads (for point A, the 
pressure head is  hA – zA ) will be such that hAP > hBP > hCP. 
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The photograph in Figure 8, below, shows piezometers located before and after an orifice 
meter in a transparent pipeline, typically used in a laboratory setting.  An orifice meter is 
used to measure flow discharge in a pipe.  The piezometers are used to measure the 
pressure variation about the orifice meter.  
 

 
 

Figure 8.  Piezometers near an orifice meter in a pipeline 
 
The figure below shows a u-tube manometer being used to determine the pressure at the 
centerline of a flowing pipe (point C).  The flowing fluid has a specific weight 1, while 
the manometric fluid has a specific weight 2.   
 

 
 

Figure 9. U-tube manometer 
 
For the case shown in Figure 9, above, point A is open to the atmosphere, thus, using 
gage pressures, we can write pA = 0.  The interface between the two liquids, point B, is 
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called a meniscus.  Point B is located at a depth h2 with respect to the free surface 
meniscus A.  Thus, the gage pressure at point B can be calculated as: 
 

pB = pA + 2h2 =  0 + 2h2 = 2h2  
 
On the other hand, within the flowing fluid, the pressure at point B can be written as 
(hydrostatic law): 

pB = pC + 1h1  
 
Equating the two expressions found above for pB one can write: 
 

pC + 1h1  = 2h2  
 
from which it follows that: 

pC = 2h2 - 1h1 
 
If the flowing fluid is water, 1 = w (the specific weight of water), and 2 = Smw, 
where Sm is the specific gravity of the manometric fluid (e.g., for mercury, Sm = 13.56).  
Thus, one can write: 
 

pC = Smwh2 - wh1 = w (Sm h2 - h1) 
 

For example, to determine the pressure at point C in the figure above, given that the 
manometric fluid is mercury (Sm = 13.56), and that h2 = 6 in = 6/12 ft = 0.5 ft, h1 = 2 
in = 2/12 ft = 0.167 ft, and w

 = 62.4 lb/ft3, using the equation above: 
 

pC = w (Sm h2 - h1) = (62.4 lb/ft3)(13.560.5 ft – 0.167 ft) = 412.7 lb/ft2, or 
 
 

psipsi
in

lb
pC 387.2

144

7.412
2

  

 
The photograph in Figure 10 shows a u-tube manometer used to measure flow discharge 
in the pipe located behind the manometer.  The manometer legs in the photograph are 
attached to tubes connected to a Venturi meter (not shown).   The manometric fluid 
shown is a red manometric fluid with a specific gravity Sm = 0.75. 
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Figure 10.  U-tube manometer for flow measurement in a pipeline. 
 

Rules for manometer calculations.  The following rules apply to the calculation of 
pressures in tube manometers involving a number of fluids: 
 

 Start at a point of known pressure or at a point where the pressure is required. 
 Following the tube manometer to the next meniscus, add the product (specific 

weight depth) if the meniscus is located below the starting point, or subtract the 
same product if the meniscus is located above the starting point. 

 Continuing the path to the next meniscus, add the product (specific weight  
depth) if the meniscus is located below the previous meniscus, or subtract the 
same product if the meniscus is located above the previous meniscus. 

 When reaching the ending point in the manometer path, make the resulting sum 
equal to the pressure at the ending point. 

 
For example, for the piezometer in Figure 6, one can write: 
 

pA + h= pB 
 
For the manometer of Figure 9, one can write: 
 

pA+ 2h2 - 1h1 = pC 
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As an additional example, consider the case in which a manometer at an orifice plate, 
illustrated in Figure 11, below. 
 

 
Figure 11. Schematic of manometric measurements at an orifice plate in a pipe. 

 
To determine the difference in pressures between points 1 and 2, use the rules for 
manometer calculations presented above; start at point 1 and first write: 
 

p1 + w(d+h) 
 
The above expression reachs from point 1 to meniscus A using water for the specific 
weight.  From point A to point B, use the specific weight of the manometric fluid, and 
subtract the amount mh from the expression above, thus, producing: 
 

p1 + w(d+h) - mh 
 
From point B to point 2, subtract the amount wd from the expression above, and make 
the result equal to the pressure at point 2:  
 

p1 + w(d+h) - mh - wd = p2 
 
Expanding the expression above: 
 

p1 + wd  +wh - mh - wd = p2 
 
Eliminating the terms + wd and - wd, one gets: 
 

p1 + wh - mh = p2 
 
Algebraic manipulation of this equation allows writing: 
 

p = p1 – p2 = (m - w) h 
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The resulting equation can be simplified by introducing the specific gravity of the 
manometric fluid, i.e., m = Smw, thus:  
 

p = wh (Sm -1) 
 
If w = 62.4 lb/ft3, h = 8 in = 8/12 ft = 0.666 ft, and Sm = 13.56 (for mercury), the 
difference in pressure, p is: 
 

p = wh (Sm -1) = (62.4 lb/ft3)(0.666 ft)(13.56 - 1) = 521.97 lb/ft2 
 
or 

psi
in

lb
p 62.3

144

97.521
2
  

  
Orifice plates may be used to measure flow in pipelines.  The pressure difference, p, can 
be related to the pipeline discharge by calibration or by theoretical analysis.  Examples of 
such analyses are presented in the next section.  
 
Deformation Manometers.  Deformation manometers, such as the Bourdon manometer 
shown in the following figure, utilize the deformation of spiral tubes or of diaphragms 
to measure pressure.  These manometers are calibrated by manufacturers or in the 
laboratory and provide a direct reading of the pressure at the manometric tap.    
 
Modern deformation manometers have digital readouts, making the reading of the 
pressure straightforward.   The Bourdon manometer shown in Figure 12 has an analog 
scale, with the pressure marked by the pointer attached to the spiral tube located inside 
the manometer. 
 

 
 

Figure 12. Deformation manometer (Bourdon manometer) 
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0312 Forces on Submerged Plane Surfaces 
The calculation of the size, direction, and location of the forces on submerged surfaces is 
essential in the design of dams, bulkheads, water control gates, and other related 
appurtenances. 
 
Horizontal surface.  The hydrostatic law indicates that pressure varies with depth.  Thus, 
a horizontal surface within a liquid at rest is subject to the same pressure p over the entire 
surface, and the resultant force F on the surface is given by:  
 

F = pA = hA                                               [Eq.  15] 
 
where, A is the area of the surface.   
 

 
 

Figure 13. Force on a submerged horizontal surface 
 
Figure 13 shows that the pressure on top of the horizontal surface is represented by 
vertical arrows of the same height pointing towards the surface.   The pressure arrows and 
the horizontal surface form a three-dimensional figure known as the pressure prism.  The 
resultant force vector on any surface coincides with the centroid (also referred to as the 
center of mass or center of gravity) of the pressure prism.   The force on a horizontal 
surface will be vertical and applied to the centroid C of the surface as illustrated in Figure 
14, below.   The point of application of the force is referred to as the center of pressure P. 

 
 

Figure 14. Point of application of a force on a submerged horizontal surface 
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Example 2 – Hydrostatic force on horizontal area 
A circular tank 15 ft in diameter is filled with water to a depth of 2 ft.  Determine the 
magnitude and location of the vertical force that the water applies on the tank bottom. 
 
The tank has a diameter D = 15 ft, therefore, the area of the tank bottom is that of a circle: 
 

2
22

71.176
4

)15(1416.3

4
ft

ftD
A 








 

 
The magnitude of the pressure applied to the bottom of the tank can be calculated by 
using the specific weight of water,  = 62.4 lb/ft3 and depth of the water in the tank, h = 
2 ft:   

p = h = (62.4 lb/ft3)(2 ft) = 124.8 lb/ft2 
 
The magnitude of the force applied on the tank bottom is: 
 

F = pA = (124.8 lb/ft2)(176.71 ft2) = 22053.41 lb 
 
The force is applied at the center of the circular bottom and is equivalent to the weight of 
the water. 
 
Inclined surface.  For a surface located on an inclined plane, the pressure increases 
linearly from the top of the surface to the bottom of the surface.  The magnitude of the 
force on the surface is calculated as: 
 

F = pcA = hcA                                                   [Eq.  16] 
 
Where pc = hc is the pressure at the centroid of the figure.  The force, F, is represented 
by the volume of the pressure prism.   

Figure 15, below, shows the pressure distribution along an inclined surface and the 
resulting force on a rectangular region laid on the inclined surface.  The rectangular 
region could represent a gate on the slope of a dam or dike.  The inclined surface is 
located at an angle  with respect to the horizontal.  Alternatively, the slope can be 
indicated by the proportion zH(horizontal):1V(vertical) as shown in the figure.  For the 
case illustrated in Figure 15, the angle  is related to the slope by: 

za

b 1
)tan(                                                           [Eq.  17] 

Figure 15 shows a system of coordinate axes, x and y, located on the inclined surface.   
The system is selected so that the x-axis is located along the free surface.  Points on the 
inclined surface can be located by either their depth h or their y coordinate along the 
surface.   These two distances are related by: 

)sin( yh                                                           [Eq.  18] 

 32



EFH Chapter 3 Hydraulics                                                                           August 2009             

Point 1 is located at the top of the gate while point 2 is located at the bottom of the gate.  
The gate dimensions are B (width) and H (height).   Point C represents the centroid of the 
gate, while point P represents the point of application of the hydrostatic force F on the 
gate, the center of pressure. 
 

 
 

Figure 15.  Pressure distribution, force, and center of pressure on an inclined surface. 
 
Unlike the case of a horizontal surface, the center of pressure on an inclined surface is 
located below the centroid of the surface along the plane of the surface, by a distance 
given by:  

c

c

yA

I
y


                                                                 [Eq.  19] 

 
In this formula, yc is the location of the centroid of the surface measured from the free 
surface along the plane of the surface, and Ic is the moment of inertia of the surface with 
respect to a centroidal axis parallel to the x axis (i.e., an axis through point C).    Thus, the 
center of pressure will be located at a distance 
 

yp = yc + y =  
c

c
c yA

I
y


                                                 [Eq.  20] 

 
For the rectangular and circular figures of Figure 14, with the x axis representing the 
centroidal axis xc, the centroidal moments of inertia are the following: 
 

Rectangular area:                   3

12

1
BHIc                                                   [Eq.  21] 
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Circular area:                           4

64
DIc


                                                  [Eq.  22] 

 
Since most gates are either rectangular or circular, equations 21 and 22 will be useful for 
calculating the center of pressure of those types of gates by using equations 19 and 20. 
________________________________________________________________________ 
Example 3 – Hydrostatic force on inclined area 
For the rectangular gate illustrated in Figure 15, B = 3 ft, H = 4.5 ft, a = 2, b = 1, y1 = 5 
ft, determine the force on the gate and the location of the center of pressure. 
 
The slope is specified by the numbers a = 2 and b = 1, i.e., 2H:1V.  The corresponding 
angle   is calculated as: 
 

57.26
2

1
tantan 11 













 

a

b  

 
While the top of the gate is located at a distance y1 = 5 ft measured along the slope, the 
bottom of the gate will be located at:  
 

y2 = y1 + H = 5 ft + 4.5 ft = 9.5 ft 
 
The centroid is located midway between y1 and y2:  
 

ft
ftftyy

yc 25.7
2

5.95

2
21 





  

 
The depth of the centroid is:  
 

hc = yc sin( ) = 7.25 ft   sin(26.57o) = 3.24 ft 
 
Thus, the pressure at the centroid is (equation 18):  
 

pc =  hc  = 62.4 lb/ft3 3.24 ft = 202.18 lb/ft2 
 
The area of the gate is:  

A = BH = 3 ft 4.5 ft = 13.5 ft2. 
 
The force on the gate (equation 16):                                     
 

F = pcA = 202.18 lb/ft2  13.5 ft2= 2729.43 lb 
 
To calculate the location of the center of pressure, start by calculating the centroidal 
moment of inertia using equation 21: 
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433 78.22)5.4(3
12

1

12

1
ftftftBHIc   

 
The distance between the centroid C and the center of pressure is calculated with 
equation 19:  

ft
ftft

ft

yA

I
y

c

c 23.0
25.75.13

78.22
2

4







 . 

 
The center of pressure is located at the distance (equation 20):  
 

yp = yc + y = 7.25 ft + 0.23 ft = 7.48 ft. 
 
And the depth of the center of pressure is (equation 18):  
 

hp= yp sin() = 7.48 ft  sin(26.56o) = 3.35 ft. 
________________________________________________________________________ 
 
Vertical surface.  In Figure 16, a rectangular surface of width B is located on a vertical 
plane and the free surface of the water reaches to a depth H.   
 

 
 

Figure 16.  Pressure prism (a) and force location (b) for a vertical rectangular surface 
 
The triangular distribution in Figure 16(b) represents the pressure distribution on the 
vertical surface.  The pressure at the bottom is given by pB = H.  The force F on the 
surface is equal to the volume of the pressure prism:  
 

2

2

1

2

1
BHBHpF B 






                                             [Eq.  23] 

 
Using equations 20 and 21 and the area of this rectangular surface, A = BH, one can 
prove that the location of the center of pressure (point of application of the force) is given 
by: 
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Hhy pp 3

2
                                              [Eq.  24] 

 
Thus, the force is applied at 2/3 of the depth measured from the surface, or 1/3 of the 
depth measured from the bottom as indicated in Figure 16 (b).  Examples of this type 
surface include vertical gates and flashboards.  
________________________________________________________________________ 
Example 4 – Hydrostatic force on vertical gate  
A wooden vertical gate with a width of 10 ft is used to close a canal.  If the water depth 
on the gate is 2.5 ft, determine the hydrostatic force on the gate and its location. 
 
For this case B = 10 ft, H = 2.5 ft, and  = 62.4 lb/ft3, thus, the force is (equation 23): 
 

lbftft
ft

lb
BHF 1950)5.2(104.62

2

1

2

1 2
3

2    

 
The force is located at a distance from the surface (equation 24): 
 

ftftHhy pp 67.15.2
3

2

3

2
  

________________________________________________________________________ 
 
The use of a spreadsheet application greatly facilitates calculation of forces on submerged 
plane surfaces.  
 
0313 Buoyancy Forces 
Buoyancy is the upwards force experienced by solid bodies submerged in liquids or 
gases.  Archimedes’ principle states that a solid body submerged in a fluid (i.e., liquid or 
gas) experiences a vertical upward force (the buoyancy force) equal to the weight of the 
volume of fluid it displaces.  Thus, the buoyancy force, FB, experienced by a body of 
volume V submerged in a fluid of specific weight , is given by:  
 

FB = V                                                         [Eq.  25] 
 

0313.1 Buoyancy Applications 

A solid body submerged is also acted upon by its own weight, which can be calculated as 
 

W = sV                                                                      [Eq.  26] 
 
where s is the specific weight (weight per unit volume) of the solid material. 
 
A solid body fully submerged in water is subject to its own weight W (equation 26) and 
the buoyancy force (equation 25) exerted by the water on the solid body.  Figure 16 

 36



EFH Chapter 3 Hydraulics                                                                           August 2009             

illustrates several possibilities in terms of force equilibrium when a solid body, fully 
submerged in water, is released. 

 
 

erence between its weight W and 
e buoyancy force FB, is zero, the body is said to be neutrally buoyant and it will remain 

e solid is larger than that of waters > , 
.g., metal).  In this case the solid body will sink into the liquid until reaching the bottom 

ced by an equal 
uoyancy force F’B, calculated based on the volume of water displaced below the 

flotation line (Vb).   Therefore, for 
 

 
________________________ 

 small barge with a rectangular bottom 4 ft by 3 ft is to be used to carry 400 lb of 

he weight W = 400 lb must be balanced by the buoyancy force on the barge, namely, 
F’B = 62.4 lb/ft3  4 ft  3 ft  h, thus: 
 

Figure 16.  Buoyancy and weight forces acting on a submerged body 
 
If the net resulting force, FR, on the body, i.e., the diff
th
in place within the water as illustrated in Figure 16(a).  
 
The net resulting force, FR, is a downward force if the weight is larger than the buoyancy 
force (W>FB), i.e., if the specific weight of th
e
of a container, as illustrated in Figure 16(b).   
 
On the other hand, if the weight is smaller than the buoyancy force (W<FB), i.e., if the 
specific weight of the solid is smaller than that of water (s < , e.g., wood), when 
released, the body will float upwards towards the free surface as illustrated in Figure 16 
(c).  A floating body will reach equilibrium when its weight is balan
b

the case illustrated in Figure 16 (d): 

W = F’B = Vb                                                           [Eq.  27] 

________________________________________________
 
Example 5 – Buoyancy force calculation – depth of a loaded barge 
A
construction materials.  What is the minimum depth needed to carry such weight? 
 
T
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inft
lb

h 1253.053.0
400

 = 6.36 in 
ftftftlb 34/4.62 3 

e minimum length L must be L = d + 1ft to allow for 

he factor of safety, F.S. for this case, is defined as the ratio of the net downward forces 
(Fd) to the net upward forces (Fu):  
 

________________________________________________________________________ 
 
Example 6 – Buoyancy force calculation – flotation safety of CMP inlet 
The figure below shows a cylindrical CMP (corrugated metal pipe) vertical inlet of 
diameter d = 36 in = 3 ft, supported on a square footing of side length  L, and height hb = 
13.5 in = 1.125 ft  The inlet footing is covered with saturated soil up to a depth h  = 7 ft 
which corresponds to the level of the inlet crest.  The CMP inlet weighs CMP = 38 lb/ft, 
the buoyant weight of saturated soil on the footing is SS = 60 lb/ft3, and the concrete in 
the footing weighs C = 150 lb/ft3.  Determine the size L of footing required to make the 
CMP inlet safe from flotation with a factor of safety F.S.= 1.5.  Assume that there is no 
frictional resistance between the inlet walls and the surrounding soil, and that no shear 
orces act on the outlet conduit.  Thf

placement of reinforcing steel bars outside of the inlet with 3 in concrete cover and 2 in 
clearance between bars and inlet.   
 
T

u

d

F
SF


F

..  

 
ere, , indicates summatioH

1
n of forces.  By requiring that the factor of safety be F.S. = 

.5, the downward forces are 50% larger than the upward forces ensuring that the inlet 
will be safe from flotation. 
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Using the minimum length of footing: 
 

L = d + 1ft = 3 ft + 1 ft = 4 ft 
 
The downward forces in this problem include the weight of the inlet, WCMP, the buoyant 
weight of saturated soil, WSS, and the weight of footing, WC.  With the minimum length, 
these forces are calculated as follows: 
 

WCMP = CMP (h+hb) = 38 lb/ft ×(7 ft + 1.125 ft) = 308.75 lb 
 

WSS = SS (L2h – d2/4 h) = 60 lb/ft3 × ((4 ft)2-3.1416× (3ft)2/4) × (7 ft ) = 3,751.19 lb 
 

WC = CL2hb = 150 lb/ft3×(4 ft)2×1.125 ft = 2,700 lb 
 
Thus,  
 

Fd = WCMP + WSS + WC = 308.75 lb + 3,751.19 lb + 2,700 lb = 6,759.94 lb 
 
The upward forces include the buoyancy forces on the riser, FBCMP, and on the footing, 
FBC, which are calculated as: 
 

FBCMP = w (d2/4) h = 62.4 lb/ft3× (3.1416×(3 ft)2/4) ×7 ft = 3,087.56 lb 
 

FBC  = w L2hb = 62.4 lb/ft3× (4 ft)2×1.125 ft = 1,123.2 lb 
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Thus, 
 

Fu = FBCMP +FBC =3,087.56 lb + 1,123.2 lb  = 4,210.76 lb 
 
The factor of safety for a side of footing L = 4 ft is:  
 

5.161.1
lb 4,210.76

lb 6,759.94
.. 





u

d

F

F
SF  

 
Since the factor of safety calculated is larger than 1.5 the CMP inlet should be safe for 
buoyancy.  If F.S. < 1.5, try a larger footing side length or height, and recalculate the sum 
of forces and the factor of safety until it is larger than the required value of 1.5. 
________________________________________________________________________ 
 
 
0315 Hydrokinetics 
Hydrokinetics is the study of fluids in motion.   Motion in fluids is produced by the action 
of forces.  For example, in pressurized pipelines pressure forces act as the driving forces 
in the flow, whereas, in open channel flow, it is the weight of water mass (gravity forces) 
that produces the motion.  In both cases, friction between the water and the walls of the 
pipe or channel act as opposing forces.  In steady flows, driving and opposing forces are 
in equilibrium.  
 
The analysis of fluids in motion typically requires the determination of flow quantities 
such as discharge or velocity, or the determination of a linear quantity such as pipe 
diameter or flow depth in open channel flow.   The determination of energy or head 
losses is also an important aspect of the analysis of fluids in motion.  These analyses have 
practical applications in the operation of devices or systems through which fluids (water) 
flow, for example, irrigation pipes, outlet works from dams, and irrigation canals. 
 
The principles of flow continuity and of conservation of energy are used to analyze fluids 
in motion. 
 
0316 Flow Continuity 
The equation of continuity represents a statement of conservation of mass in fluid flow.  
Consider, for example, a steady flow in a closed conduit of varying cross-section as 
shown in Figure 18 below.   Let Q be the discharge through the conduit.  The equation of 
continuity for steady flow (i.e., Q = constant) states that: 
 

Q = V1A1 = V2A2 = V3A3                                               [Eq.  28] 
 
where V1, V2, and V3 represent the flow velocities at sections 1, 2, and 3 respectively.   
The areas of the corresponding cross-sections are A1, A2, and A3. 
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Figure 18. Flow continuity in a pipe expansion. 
 
The cross-sectional area of a circular pipe of diameter D is given by: 
 

4

2D
A


                                                          [Eq.  29] 

 
 And the discharge can be written as: 
 
 

4

2D
VVAQ


                                            [Eq.  30] 

 
Knowing the discharge Q, the velocity V in a circular conduit of diameter D can be 
calculated as: 
 

2

4

D

Q
V


                                                            [Eq.  31] 

 
In units of the English System, the velocity V is given in ft/s (or fps), while the discharge 
Q is given in ft3/s or cfs.  Using the International System, the velocity V is given in m/s 
and the discharge Q is given in m3/s.  Other units of discharge in the English System 
include gal/min (or gpm) and gal/day (or gpd), which are commonly used in water supply 
applications.   In the operation of large reservoirs, for example, the use of acre-foot/day 
as a unit of discharge is not uncommon.  In the International System one could also use 
m3/min or m3/day for large discharge operations, while the units of liters/s or liters/min 
are used for small discharges. 
 
________________________________________________________________________ 
Example 7 – Equation of continuity in a pipe - discharge and velocity calculation  
Suppose that in the pipeline of Figure 18 the diameters are D1 = 0.25 ft (3 in), D2 = 0.50 
ft (6 in), and D3 = 0.75 ft (9 in), and that the velocity at section 3 is measured to be V3 = 
0.5 fps.  Find the velocities in sections 1 and 2 and the discharge. 
 
The discharge is calculated as:  
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The velocities at sections 1 and 2 are, therefore, calculated as:  
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and 
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________________________________________________________________________ 
 
 
A branching pipeline in which a pipe of diameter D1 splits into two pipelines with 
diameters D2 and D3 is shown below.   Continuity requires that the discharges through 
sections 2 and 3 add to equal the discharge through section 1:  
 

Q1 = Q2 + Q3                                                                       [Eq.  32] 
 

 
Figure 19.  Schematic of flow in branching pipelines. 

 
In terms of areas and velocities, the continuity equation for the branching pipe case is 
written as:  

V1A1 = V2A2 + V3A3                                                            [Eq.  33] 
 
Replacing the areas in terms of the diameters: 
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                               [Eq.  34] 

 
Simplifying: 
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V1D1

2 = V2D2
2 + V3D3

2
                                                         [Eq.  35] 

 
_______________________________________________________________________ 
Example 8 – Equation of continuity – velocity and discharge calculation in branching pipeline 
A 12-in-diameter pipeline carrying water at a velocity of 3.5 fps branches into a 6-in-
diameter pipeline and a 9-in-diameter pipeline.   If the velocity in the 6-in pipeline is 
measured to be 4.0 fps, what is the velocity in the 9-in pipeline, and what is the total 
discharge through the 12-in pipeline? 
 
Using D1 = 12 in = 1 ft, V1 = 3.5 fps, D2 = 6 in = 0.5 ft, V2 = 4.0 fps, and D3 = 9 in = 
0.75 ft, find V3 and Q1.   From equation 35, i.e., V1D1

2 = V2D2
2 + V3D3

2, it follows that: 
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The discharge through section 1 is:  
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________________________________________________________________________ 
 
The equation of continuity can also be applied to flow in open channels.  Consider the 
flow in an open channel with a non-symmetric trapezoidal cross-section as illustrated in 
the figure below. 

 
Figure 20. Non-symmetric trapezoidal cross-section in an open channel flow. 

 
This cross-section is characterized by the bottom width b, the side slopes z1 and z2, and 
the flow depth d.   The side slopes are interpreted as z1 H:1V, i.e., z1 units horizontal to 1 
unit vertical.  The top width T is the length of the free surface at the cross-section.   For 
the non-symmetric trapezoidal cross-section shown above, the top width is given by 
  

T = b + (z1+z2)d                                          [Eq.  36] 
 
and the area is calculated as the average of trapezoid’s bases, b and T, multiplied by the 
height of the trapezoid, d : 
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________________________________________________________________________ 
Example 9 – Equation of continuity – velocity in a trapezoidal open-channel cross-section 
Suppose that the non-symmetric trapezoidal cross-section of Figure 20 has b = 3 ft, d = 
1.3 ft, z1 = 0.5, and z2 = 1, and carries a discharge Q = 15.2 cfs.  The area is calculated 

as: 
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And the flow velocity is:         V = Q/A = 15.2 cfs/5.17 ft2 = 2.94 fps 
________________________________________________________________________ 
Example 10 – Equation of continuity – channel width reduction 
The figure below shows a rectangular open channel that reduces in channel width from b1 
to b2.   

 
Figure 21. Contraction in a rectangular open channel. 

 
In Figure 21 suppose that b1 = 7.5 ft, and b2 = 5.0 ft.  The depth of flow and velocity in 
section (1) are d1 = 2.5 ft and V1 = 4.5 fps.   What depth of flow is required in section (2) 
in order to maintain the same flow velocity (i.e., V2 = V1 = 4.5 fps)?  What is the flow 
discharge through the channel? 
 
With the cross-sectional shape being rectangular in both sections (1) and (2), the area of 
the cross-section is given by A = bd.  Thus, the continuity equation (equation 28) can be 
written as: 

Q = V1b1d1 = V2b2d2 
 
The depth at section (2) is given by: 
 

ftfps
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The discharge is calculated as: 
 

Q = V1b1d1 = 4.5 fps  7.5 ft  2.5 ft = 84.38 cfs 
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________________________________________________________________________ 
Example 11 – Equation of continuity – rectangular open channel diversion 
Figure 22 shows a rectangular channel of width b1 from which water is diverted through 
a lateral rectangular channel of width b3.  The section of the main channel downstream 
from the diversion has a width b2 = b1.   

 
Figure 22.  Rectangular open channel diversion. 

 
Using b1 = b2 = 10 ft, d1 = 4.0 ft, V1 = 1.2 fps, d2 = 3.5 ft, b3 = 5.0 ft, d3 = 2.5 ft, and V3 
= 0.6 fps, determine the flow velocity at section 2, V2, as well as, the discharges through 
sections 1, 2, and 3. 
 
For a branching channel as shown in Figure 22, continuity requires that Q1 = Q2 + Q3, 
i.e., V1b1d1 = V2b2d2 + V3b3d3.  Thus, the velocity at section 2 is: 
 
V2 = (V1b1d1 - V3b3d3)/(b2d2) = (1.2 fps10 ft4 ft – 0.6 fps5 ft2.5 ft)/(10 ft3.5 ft) =  
 

V2 = 1.157 fps 
 
The discharges through the three sections are calculated as follows: 
 

Q1 = V1b1d1 = 1.2 fps10 ft4 ft = 48 cfs 
 

Q2 = V2b2d2 = 1.157 fps10 ft3.5 ft = 40.5 cfs 
 

Q3 = V3b3d3 = 0.6 fps5 ft2.5 ft = 7.5 cfs 
________________________________________________________________________ 
 
0317 Conservation of Energy 
In the analysis of fluid flow, three types of energy are typically considered: potential or 
elevation energy, pressure energy, and kinetic energy.   Figure 23, below, illustrates these 
concepts using a simple reservoir-sprinkler system.  
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Figure 23. Flow energies illustrated with a simple reservoir-sprinkler system 

The elevation of the water in the reservoir represents potential energy since it is this 
elevation that provides the available energy for the system.   As the water flows through 
the pipe and is discharged through the sprinkler, it acquires motion which converts some 
of the potential energy into kinetic energy (energy of motion).  Also, at the sprinkler, a 
measurable pressure exists that is related to pressure energy at that particular point.   

 
In a flowing fluid system as the one illustrated above, energy is conserved as it is 
converted from one type of energy (potential) into another (pressure or kinetic).  In fluid 
flow these energies are typically converted to energy heads that can be easily visualized 
as in the potential energy head of Figure 23.  The description of these energy heads 
follows in the next sections. 

0317.1 Potential Energy 

Potential energy is the ability of a water mass to perform work because of the elevation of 
that mass of water with respect to an arbitrary datum line or reference level.  A mass of 
weight W, at an elevation of z feet, has a potential energy equal to Wz (ft-lb) with respect 
to the datum.  The elevation head, z, expresses not only a linear quantity (ft), but also 
energy per unit weight, i.e., ft-lb/lb = ft. 
 

0317.2 Pressure Energy 

Pressure energy at a point of a fluid flow is produced by the local pressure at the point.  
This pressure could be the result of a pumping action in a pipeline or of the weight of 
water above a certain point in open channel flow.  The pressure head (pressure energy per 
unit weight) in pipeline flow is calculated as p/, pressure divided by the specific weight 
of water.  In open channel flow applications, the pressure head is equal to the flow depth, 
d, and the pressure distribution is assumed to be hydrostatic. 
 

0317.3 Kinetic Energy 

The kinetic energy (K) of a mass (M) of fluid moving at a velocity (V) is given by K =1/2 
MV2.  Since its weight is W = Mg, the kinetic energy per unit weight is calculated as:  
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                                        [Eq.  38] 

 
Where g is the acceleration of gravity (g = 32.2 ft/s2).  The term hv in equation 38 is 
referred to as the velocity head. 
 
The total energy head, H, is the sum of the potential energy head (z), the pressure head 
(p/ or d), and the velocity head (V2/2g). All three forms of energy head may be 
expressed as a linear quantity (ft), or as energy per unit weight (ft-lb/lb). 
 
Energy heads in pipe flow. Figure 24 illustrates the three different energy heads applied 
to pipe flow.  Notice that, typically, the potential energy head (elevation) in a pipe flow is 
referenced at the centerline of the pipe.  The pressure head is measured from the pipe 
centerline, and the distance from the datum to the top of the pressure head represents the 
piezometric head:  


p

zh                                                                [Eq.  39] 

 
The difference between the total energy head and the piezometric represents the kinetic 
energy.  The total energy in a pipe flow is given by: 

g

Vp
z

g

V
hH

22

22




                                                  [Eq.  40] 

  
The line representing the values of the total head, H, as function of position x along the 
pipeline is referred to as the Energy Line (E.L.), while that representing the values of the 
piezometric head, h, is referred to as the Hydraulic Grade Line (H.G.L.). Energy losses, 
hf, are the losses due to friction between sections (1) and (2).  
 

 
 

Figure 24. Energy heads in pipe flow. 
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________________________________________________________________________ 
Example 12 – Calculation of pressure, velocity, piezometric and total head 
A manometer located at a point of a 6-in-diameter pipe shows a pressure reading of 6 psi.  
The point of pressure measurement is located at an elevation of 1500 ft above mean sea 
level and the pipe is carrying a discharge of 0.6 cfs.  Calculate the pressure head, the 
velocity head, the piezometric head, and the total head. 
 
The data given are D = 6 in = 0.5 ft, p = 6 psi = 6144 psf = 864 psf, z = 1500 ft, and Q 
= 0.6 cfs.  Using  = 62.4 lb/ft3 for the specific weight of water, the pressure head is 
calculated as:  

p/ = (864 lb/ft2)/(62.4 lb/ft3) = 13.85 ft 
 
The velocity can be calculated from the continuity principle using equation 31:  
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The velocity head is:  
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/2.322

)/06.3(

2 sft
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g

V
hv 

   = 0.15 ft 

 
The piezometric head is:  

 
h = z + p/ = 1500 ft + 13.85 ft = 1513.85 ft 

 
The total head is  

H = h + hv = 1513.85 ft + 0.15 ft = 1514.0 ft 
 
Notice that in this example mean sea level is used as the datum line or reference level.  If 
the pressure measurement point were located at 10 ft above the floor and the floor used as 
the datum line, then z = 10 ft, and the piezometric head and total head would be 
calculated as h = z + p/ = 10 ft + 13.85 ft = 23.85 ft, and H = h+hv = 23.85 ft + 0.15 ft 
= 24.0 ft. 
________________________________________________________________________ 
 
In the previous example, the discharge Q was used to calculate the velocity V in a circular 
pipeline of diameter D.  In terms of the discharge (see equations 31 and 38), the velocity 
head can be calculated as: 
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Using this result the total energy head in a pipeline of diameter D carrying a discharge Q 
is given by:  

42

28

gD

Qp
zH


                                       [Eq.  42] 

________________________________________________________________________ 
Example 13 – Calculation of total head 
A 2-in diameter pipeline carries a flow discharge of 0.3 cfs.  At a point of the flow, 
located at an elevation of 2.5 ft above the floor, the pressure is measured to be 2 psi.  
What is the total energy head at that point? 
 
Given D = 2 in = 2/12 ft = 0.166 ft, Q = 0.3 cfs, z = 2.5 ft, p = 2 psi = 2144 psf = 288 
psf, and, with  = 62.4 lb/ft3, the total head is:  
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________________________________________________________________________ 
 
Energy heads in open channel flow.  The energy heads for open channel flow are 
illustrated in Figure 25.  The elevation head, z, refers to the location of the channel bed, 
while the pressure head is represented by the flow depth d.   
 
The sum of the potential energy head (z) and the flow depth (d) in open channel flow 
represents the water surface elevation or stage, WS = z + d.  The difference between the 
total energy and the water surface elevation is the velocity head.  The total energy in a 
channel flow is given by: 
 

H = WS + V2/2g = z + d + V2/2g                                  [Eq.  43] 
 
Of the total energy, the quantity called the specific energy is: 
  

E = d + V2/2g                                                  [Eq.  44] 
  
This quantity represents the flow energy measured with respect to the channel bed at a 
given cross-section. 
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Figure 25. Energy heads in open channel flow. 
 
In open channel flow, as illustrated in Figure 25, the hydraulic grade line is represented 
by the water surface. As in Figure 24, the term hf represents the energy losses due to 
friction between section (1) and section (2). 
 
In both the pipe flow and the open channel flow illustrated in Figure 24 and Figure 25, 
respectively, the horizontal distance between cross-sections 1 and 2 is referred to as x.   
The slope length of pipeline measured along its centerline, or the slope length of the 
channel between the two cross-sections, will be referred to as L. 
________________________________________________________________________ 
Example 14 – Velocity head, specific energy, and total head in open-channel flow 
A symmetric trapezoidal channel with bottom width b = 8.5 ft and side slope z = 0.5, 
carries a discharge of Q = 30 cfs at a depth d = 2.3 ft.  Calculate the velocity head, and 
specific energy for this channel.  If the channel bed is located at an elevation of 1255.32 
ft above mean sea level, calculate the water surface elevation at that point, as well as the 
total energy head. 
 
Equation 37, or methods in the following Section 0320, Open Channel Flow, can be used 
to calculate the cross-sectional area for a symmetric trapezoidal cross-section by taking z1 
= z2 = z, i.e., A = (b+zd)d.   For this example, the data given are b = 8.5 ft, z = 0.5, and 
d = 2.3 ft.  Thus, A = (8.5 ft + 0.52.3 ft)2.3 ft =  22.20 ft2. 
 
The flow velocity for this case is given by V = Q/A = (30 ft3/s)/ (22.20 ft2) = 1.35 ft/s, and 
the velocity head is hv = V2/ (2g) = (1.35 ft/s)2/ (232.2 ft/s2) = 0.028 ft.  Thus, the 
specific energy is:  E = d + hv = d + V2/ (2g) = 2.3 ft + 0.028 ft = 2.328 ft.   
 
The elevation of the channel bed is z = 1255.32 ft (notice that this is a different z than the 
side slope z for the cross-sectional geometry), and the water surface elevation is  
WS = z + d = 1255.32 ft + 2.3 ft = 1257.62 ft.    
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The total energy head is calculated as H = z + E = 1255.32 ft + 2.328 ft = 1257.65 ft. 
________________________________________________________________________ 
 

0317.4 Equation of Energy and Bernoulli’s Principle 

In the diagrams shown in Figure 24 and Figure 25, water flows from section (1) to 
section (2).  The diagrams indicate that the total energy head at the upstream section (1) 
is larger than the total energy head at the downstream section (2), i.e., H1 > H2.  The 
difference represents the energy losses hf due to friction as the water moves from section 
(1) to section (2).   The law of conservation of energy for both pipe flow and open 
channel flow can be written as: 

H1 = H2 + hf                                                    [Eq.  45] 
 

where hf  represents the energy losses due to friction between sections (1) and (2). 
 

Specifically, for the pipe flow case illustrated in Figure 24: 
 

f h 
g

V
   h 

g

V
  h 

22

2
2

2

2
1

1                                       [Eq.  46] 

or 

f h 
g

V
 

p
  z 

g

V
  

p
z 

22

2
22

2

2
11

1 
                             [Eq.  47] 

 
The law of conservation of energy for open channel flow, as illustrated in Figure 25, is 
written as: 
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In some instances of pipe flow (or other enclosed flow), the fluid can be assumed to be 
ideal and the friction losses are zero.   This is an assumption of the Bernoulli’s principle, 
and the equation of energy (Bernoulli’s equation) can be written as: 
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                             [Eq.  50] 

 
In the most general case of pipe flow, however, friction losses, hf, and local losses, hL, 
(due to the presence of appurtenances in the pipe) must be included.  Examples of 
appurtenances include elbows and valves.   Taking into account both friction and local 
losses, the energy equation for pipelines can be written as: 
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________________________________________________________________________ 
Example 15 – Bernoulli’s principle applied to sluice gate flow 
 
The figure below shows a schematic of a sluice gate in a rectangular channel of width b.     
The energy line (E.L.) and the hydraulic grade line (H.G.L.) are also depicted.  The 
horizontal energy line suggests no energy losses as the flow passes under the gate. 
Determine the discharge Q if the upstream and downstream depths are measured as 3.5 ft 
and 1.0 ft and the channel width, b, is 10 ft.  
 

 
Figure 26. Sluice gate flow. 

 
Since there are no energy losses and a horizontal bed, Bernoulli’s equation reduces to: 
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Writing the velocity head in terms of the discharge, V1

2/2g = Q2/(2gA1
2) and V2
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2), and using A1 = bd1, A2 = bd2, Bernoulli’s equation becomes: 
 

 
dgb

Q
  d 

dgb

Q
  d

2
2

2

2

22
1

2

2

1 22
  

 
Solving for Q and simplifying the result produces: 
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________________________________________________________________________ 
Example 16– Energy equation in pipelines 
Let the diagram in Figure 24 represent a pipeline of constant diameter D = 6 in carrying a 
discharge Q = 0.5 cfs.  Let the elevations of points 1 and 2 be given by z1 = 7 ft and z2 = 
12.5 ft with respect to an arbitrary horizontal reference level (datum line).  The pressure 
at point 2 is measured to be p2 = 15.2 psi. Calculate the velocity head for this pipe flow. 
If the energy loss in the pipeline is estimated to be hf = 15 ft, what is the pressure at point 
1, p1 (psi)?  Use  = 62.4 lb/ft3 for the specific weight of water. 
 
Since the pipeline has a constant diameter, D = 6 in = 6/12 ft = 0.5 ft, the velocities at 
points 1 and 2 are the same (equation 31): 
 

V1 = V2 = V = 4Q/(D2) = 4 (0.5 ft3/s)/(3.1416(0.5 ft)2) = 2.55 fps 
 
The velocity head throughout the pipeline is the same and equal to (equation 38): 
 

hv = V2/2g = (2.55 ft/s)2/(2 32.2 ft/s2) = 0.10 ft 
 
Also, the velocity head can be calculated in terms of the discharge as (equation 41): 
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The equation of energy for the case of Figure 24 is given by (equation 47): 
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Since the velocities are the same (V1 = V2), the equation simplifies to: 
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From which the pressure head at point 1 is solved for, as: 
 

 p1/ = z2 – z1+ p2/ + hf = 12.5 ft – 7 ft + (15.2144 lb/ft2)/(62.4 lb/ft3) + 15 ft 
 

p1/ = 55.58 ft 
 

Thus, the pressure at point 1 is:  
 

p1 = 55.58 ft62.4 lb/ft3 = 3468.19 lb/ft2 = 3468.19/144 psi = 24.08 psi 
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________________________________________________________________________ 
Example 17 - Energy equation in open channel flow 
Suppose that Figure 25 represents a reach in an open channel flow with a rectangular 
cross-section of width b = 12.5 ft.   The depth of flow at sections 1 and 2 are measured to 
be d1 = 4.7 ft and d2 = 3.8 ft, respectively, and the velocity at section 1 is V1 = 4.2 fps.   
The channel bed elevations at sections 1 and 2 are given as z1 = 25 ft and z2 = 22.5 ft.  
Calculate the flow discharge Q and the energy loss, hf, between sections 1 and 2. 
 
The area at section 1 is A1 = bd1 = 12.5 ft  4.7 ft = 58.75 ft2, and the flow discharge is Q 
= V1A1 = 4.2 ft/s  58.75 ft2 = 246.75 cfs.  The area at section 2 is A2 = bd2 = 12.5 ft  
3.8 ft = 47.50 ft2, and the flow velocity at that location is V2 = Q/A2 = (246.75 ft3/s) / 
(47.50 ft2) = 5.19 fps. 
 
The energy equation for the case of Figure 25 is written as (equation 49): 
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From which: 

hf =  (z1 + d1 + V1
2/2g) – (z2 + d2 + V2

2/2g) = 
 

= [(25 ft + 4.7 ft + (4.2 ft/s)2/(232.2 ft/s2)] - [(22.5 ft + 3.8 ft + (5.19 ft/s)2/(232.2 ft/s2)]  
 

= 3.26 ft 
________________________________________________________________________ 
 

0317.5 Hydraulic and Energy Gradients 

Figure 24 and Figure 25 represent the variation of the different energy heads in pipe flow 
and open channel flow, respectively.   In both types of flow the line joining the total 
energy heads along the pipeline or open channel is the energy line (E.L.).   In pipe flow, 
the line joining the piezometric heads along the pipeline (h = z + p/) is the hydraulic 
grade line (H.G.L.), whereas, in open-channel flow the water surface represents the 
hydraulic grade line.   
 
For both pipe flow and open channel flow the energy gradient, or slope of the energy 
line, Sf, is defined as the rate of friction head loss, hf, per unit length, L, of the pipeline or 
open channel:  
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21                                                     [Eq.  52] 

 
However, in open channel flow, the channel bed slope, So, is typically very small such 
that the length of the channel, L, is approximately equal to the horizontal distance x, i.e., 
L  x.  The energy gradient for open channels, therefore, can be defined as: 

 54



EFH Chapter 3 Hydraulics                                                                           August 2009             

x

HH

x

h
S f

f 





 21                                                     [Eq.  53] 

 
The hydraulic gradient is the slope of the hydraulic grade line.  For pipe flow, such 
gradient is defined as the change in piezometric head per unit length of pipe: 
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Whereas, for an open channel flow the hydraulic gradient is the water surface slope.  
This slope is the change in water surface elevation, WS, per unit of horizontal distance 
along the channel path: 
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________________________________________________________________________ 
Example 18– Hydraulic and energy gradients in pipe flow 
The diameter of a 10-ft-long pipeline tapers from 1-ft-diameter at section 1 to 0.5-ft-
diameter at section 2 of Figure 24. Let the pressure at section 1 be p1 = 6.0 psi and that at 
section 2 be p2 = 5.5 psi.  The pipeline is laid so that point 1 is at elevation z1 = 12.5 ft 
and z2 = 6.2 ft.   If the pipeline is carrying a flow Q = 1.5 cfs, determine the friction loss, 
hf, the hydraulic gradient, Sh, and the energy gradient, Sf, for the flow. 
 
For L = 10 ft, D1 = 1 ft, D2 = 0.5 ft, p1 = 6.0 psi, p2 = 5.5 psi, z1 = 12.5 ft, and z2 = 6.2 ft,   
the velocities are:  
 

V1 = 4Q/(D1
2) = (41.5 ft3/s)/(3.1416(1ft)2) = 1.91 fps 

and  
 

V2 = 4Q/(D2
2) = (41.5 ft3/s)/(3.1416(0.5 ft)2) = 7.64 fps 

 
The piezometric or pressure heads at sections 1 and 2 are: 
 

ft
ftlb

ftlb
ft  

p
zh 35.26

/4.62

/1440.6
5.12

3

2
1

11 





 

and 
 

ft
ftlb

ftlb
ft 

p
  z h 89.18

/4.62

/1445.5
2.6

3

2
2

22 





 

 
The difference in piezometric heads is: 
 

h = h1 – h2 = 26.35 ft – 18.89 ft = 7.46 ft 
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The total energy heads at sections 1 and 2 are: 
 

ft
sft

sft
ft 

g

V
  hH 41.26

/2.322

)/91.1(
35.26

2 2

22
1

11 


  

and 
 

ft
sft

sft
ft 

g

V
   h H 79.19

/2.322

)/64.7(
89.18

2 2

22
2

22 


  

 
Thus, the energy loss is:  
 

hf = H1 – H2 = 26.41 ft – 19.79 ft = 6.62 ft 
 

The hydraulic gradient is calculated as: 
 

746.0
10

46.7





ft

ft

L

h
Sh  

 
The energy gradient is: 
 

662.0
10

62.6


ft

ft

L

h
S f

f  

 
________________________________________________________________________ 
Example 19 - Hydraulic and energy gradients in open channel flow 
 
In example 17, utilizing the energy equation in open channel flow, the following flow 
parameters were given or calculated: rectangular cross-section of width b = 12.5 ft.  
Depths of flow: d1 = 4.7 ft and d2 = 3.8 ft.  Flow velocities: V1 = 4.2 fps and V2 = 5.19 
fps.  Bed elevations: z1 = 25 ft and z2 = 22.5 ft.  Energy head loss, hf = 3.26 ft.    
 
If the distance between the two sections is x = 2500 ft, calculate the energy gradient and 
the hydraulic gradient for this flow. 
 
The energy gradient:  
 

Sf =hf /x = 3.26 ft/2500 ft = 0.0013 
 
The water surface elevations at sections 1 and 2 are, respectively, WS1

 = z1 + d1 = 25 ft 
+ 4.7 ft = 29.7 ft, and WS2 = z2 + d2 = 22.5 ft + 3.8 ft = 26.3 ft.  Thus, the hydraulic 
gradient, or water surface slope, is:  
 

Sw = (WS2-WS1)/x = (29.7 ft – 26.3 ft)/2500 ft = 3.4 ft/2500 ft = 0.00136 
_______________________________________________________________________ 
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0320 Open Channel Flow 
Open channel flow occurs when water is conveyed to a lower elevation through a conduit 
or channel open to the atmosphere or when a pipe flows without being full.  Open 
channel flow is also referred to as free-surface flow.  Flows in creeks, rivers, aqueducts, 
flumes, irrigation canals, gutters, and culverts are examples of open channel flows.    
 
Open channels occur on a slope.  If the slope is in the direction of the flow it is referred to 
as a favorable slope.  If the slope is opposite to the direction of the flow, then the slope is 
referred to as an adverse slope. An open channel could also have a horizontal bed, in 
which case the slope is zero.  A channel of constant slope and constant cross-section 
which does not change its alignment is referred to as a prismatic channel.  Such is often 
the case for constructed channels.  Natural channels, on the other hand, are often highly 
irregular showing varying alignment, curves, and changing cross-sectional geometry. 
 
0321 Uniform Open Channel Flow 
Uniform flow in a prismatic open channel occurs when the flow depth remains constant 
for a constant discharge.  Uniform flow typically develops in long prismatic channels, 
away from head or tail sections.  Natural channels rarely maintain uniform flow for long 
reaches. 
 
Figure 27 shows the forces acting on a section of length L of uniform flow on a channel 
laid on a slope So = tan(o).  The slope is sufficiently small so that the distribution of 
pressure with depth in the flow is hydrostatic, and so that So = tan(o)  sin(o)  o 
(measured in radians). 
 

 
 

Figure 27. Schematic of uniform flow in open channels. 
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Because the flow depth and the cross-sectional shapes are the same at both ends of the 
flow element shown, the pressure forces acting at the upstream and downstream cross-
sections of the flow element will cancel each other.  The remaining driving force will be 
the component of the weight of the flow element parallel to the channel bed.  This force 
is given by: 

FD = Wsin(o) = ALsin(o)  ALSo 
 
Where A is the cross-sectional area of the flow. 
 
Opposing this driving force is an opposite force due to friction on the channel walls, also 
known as the shear force.  In Figure 27, o represents the bed shear stress (assumed 
uniform through the channel), and the total shear force is given by: 
 

FS = oLP 
 
Where P, the wetted perimeter, is the length of the channel cross-section in contact with 
the water. 
 
For a uniform flow to occur, the driving force (weight component) and the shear force 
must be in equilibrium, i.e., FS = FD, or: 
 

oLP  = ALSo 
 
The bed shear stress is, therefore, given by: 
 

ooo SRS
P

A
                                       [Eq.  56] 

Where R, the hydraulic radius, has been introduced: 
 

R = A/P                                                   [Eq.  57] 
 
________________________________________________________________________ 
Example 20 – Shear stress in uniform open-channel flow 
Calculate the shear stress on the bed of an open channel with a hydraulic radius, R = 0.75 
ft, laid on a slope, So = 0.001. Use = 62.4 lb/ft3 for the specific weight of water. 
 
The shear stress is calculated as: 
 


23

0468.0001.075.04.62
ft

lb
ft

ft

lb
SR oo   

 

psi
in

lb
74.61440468.0

2
  

________________________________________________________________________ 
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The shear stress o can be written in terms of the mean flow velocity V, the density of 
water , and a dimensionless “drag” coefficient CD:  
 

2

2

1
VCDo    

 
Substituting this result into equation 56 for o, and using  = g:  
 

oD SRgVC   2

2

1
 

 
From which it follows that the velocity can be calculated as: 
 

oo
D

SRCSR
C

g
V 

2
                                [Eq.  58] 

 
This result is known as Chezy’s equation, and the coefficient C is referred to as Chezy’s 
coefficient.   Typical values of the Chezy coefficient range between 80 and 140. For 
example, the value C = 120 is typically used for concrete. 
________________________________________________________________________ 
Example 21 – Velocity calculation in open-channel flow using Chezy’s equation 
Using the Chezy equation with C = 120, calculate the flow velocity in an open channel 
with a hydraulic radius R = 0.75 ft, laid on a slope So = 0.001. 
 
The velocity in the open channel flow is calculated as: 
 

fpsSRCV o 29.3001.075.0120   

________________________________________________________________________ 
 
While Chezy’s equation is dimensionally sound, a different equation, Manning’s 
equation, has been used for more than a century for solving practical problems of uniform 
flow in open channels.  Manning’s equation has become the most widely used uniform 
flow equation, with many references available for the selection of a Manning’s 
coefficient.  For historical notes on the development of both the Chezy’s and Manning’s 
equations, refer to Chow (1959).   Manning’s equation is presented in section 0321.2.   
 

0321.1 Geometric Characteristics of Prismatic Channels 

In general, we are interested in calculating the following geometric characteristics of 
open channel cross-sections: 
 

 The cross-sectional area, A (ft2) 
 The wetted perimeter, P (ft) 
 The top-width of the section, T (ft) 
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 The hydraulic radius, R = A/P (ft) 
 The hydraulic depth, D  = A/T (ft) 

uivalent rectangular 
ross-section of the same area and width equal to the top-width (T).  

for open channels of regular-shaped cross-
ctions is straightforward as indicated next. 

h

 
The cross-sectional area, wetted perimeter, and hydraulic radius have been defined in 
section 0321.  The top-width of the section (T) is the length of the water surface in the 
cross-section, whereas the hydraulic depth (Dh) is the depth of an eq
c
 
The calculation of geometric characteristics 
se
 
Non-symmetric trapezoidal channel 
The figure below shows a non-symmetric trapezoidal channel cross-section.  
 

 
 

Figure 28. Non-symmetric trapezoidal channel 

epth, d, the geometric characteristics of the non-symmetric trapezoidal cross-section are: 
 

A = ½ (2b+ (z1+z2) d) d,    P = b + d (

 
Given the bottom width of the cross-section, b, the side slopes z1 and z2, and the flow 
d

2
2

2
1 11 zz  ),    T = b+ (z1+z2) d     [Eq.  59] 

t 

ented as z2H:1V.   If the angles 1 
nd 2 are given, the side slopes can be calculated as: 

 

__________ 

cal 
ne.  Calculate the side slopes and the geometric characteristics for this cross-section. 

irst, the side slopes, z1 and z2 are calculated as: 
 

z1 = tan (1) = tan 30o = 0.5773 

 
In this case, z1 and z2 represent the dimensionless side slope as horizontal displacemen
per unit vertical rise.  For example, on the left-hand side the channel bank slopes z1 ft 
horizontal per each vertical foot.  This is also represented as z1H:1V (z1 ft horizontal to 1 
ft vertical).  The right-hand-side slope would be repres
a

z1 = tan (1),    z2 = tan (2)                                  [Eq.  60] 
______________________________________________________________
Example 22 – Geometric characteristics of a non-symmetric trapezoidal cross-section  
A non-symmetric trapezoidal channel flowing at a depth d = 1.5 ft, has a bottom width b 
= 6.5 ft, and side slopes laid on angles, 1 = 30o and 2 = 60o, with respect to a verti
li
 
F
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 z  = tan ( ) = tan 60o = 1.7320 

he geometric characteristics of this cross-section are calculated as follows: 

 
A = ½ (2b+ (z1+z2) d) d = ½  (2 x 6.5 ft + (0.5773+1.7320)  1.5 ft) 1.5 ft = 12.35 ft2 

P = b + d(

2 2

 
T
 

 
2
2

2
1 11 zz  )  ( 22 7320.115773.01  = 6.5 ft + 1.5 f t ) = 11.23 ft 

R = A/P = 12.35 ft

T = b+(z1+z )d =  6.5 ft + (0.5773+1.7320)  1.5 ft = 9.96 ft 

D  = A/T = 12.35 ft2/9.96 ft = 1.24 ft 

_______________________________________________________________________ 

ss-section.  The geometric elements of some of them are 
resented in detail below. 

 

 
2/11.23 ft = 1.10 ft 
 

2

 
h

 
_
 
The figure below shows different cross-sections that can be derived from the non-
symmetric trapezoidal cro
p

 
 

Figure 29.  Channel cross-sections that can be derived from a non-symmetric trapezoidal cross-
section. 

 
 
Wide channels 
Channels of approximately rectangular shape that are much wider than they are deep, say, 
b/d > 10, are referred to as wide channels.  For such channels, the hydraulic radius is 
pproximately equal to the channel depth and to the hydraulic depth: 

 
a

R ≈ d ≈ Dh                                                      [Eq.  61] 
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________________________________________________________________________ 

te the hydraulic radius 
sing the full formula and the approximation for a wide channel. 

he hydraulic radius using the full definition for a rectangular channel is: 
 

RR = bd/(b+2d) = (20 ft)  (1.5 ft)/(20 ft + 2  1.5 ft) =  1.3 ft 

e-channel approximation, R  = d = 1.5 ft, results in about a 15% 

_______________________________________________________________________ 

 
Example 23 – Hydraulic radius for wide rectangular channel 
For a rectangular channel with b = 20 ft and d = 1.5 ft, calcula
u
 
T

 
Using the wid W

difference.   
_
 
Symmetric trapezoidal channel 
Many constructed trapezoidal channels are symmetric, thus, z1 = z2 = z, and the 

eometric characteristics are calculated as: 
 

A = (b+zd) d,     P = b + 2d

g

21 z ,     T = b+2zd                      [Eq.  62] 

_ 

ope 1.5 

n channel.  Also, determine the angle that the channel banks 
ake with a vertical line. 

he solution is given by: 
 

A = (b+zd)d = (2.5 ft + 1.5  0.75 ft  = 2.72 ft2 

P = b + 2d

 
_______________________________________________________________________
Example 24 – Geometric characteristics of a symmetric trapezoidal cross-section in open channels 
A symmetric trapezoidal open channel with a bottom width b = 2.5 ft and side sl
H: 1 V (z = 1.5) flows with a water depth d = 0.75 ft.  Determine the geometric 
characteristics for this ope
m
 
T

0.75 ft) 
 

21 z = 2.5 ft + 2  0.75 ft  25.11  = 5.20 ft 

R = A/P = 2.72 ft

T = b+2zd = 2.5 ft + 2  1.5  0.75 ft = 4.75 ft 

Dh = A/T = 2.72 f /4.75 ft = 0.57 ft 

alculate the angle that the channel banks make with a vertical line, use z = tan (), 
r:  

 

_______________________________________________________________________ 

 
2/5.20 ft = 0.52 ft 
 

 
t2

 
To c
o

oz 31.56)5.1(tan)(tan 11    
_
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Circular channel 
A circular open channel results when water flows in a pipe or circular conduit with a free 

rface, as shown below.    
 
su

 
 

Figure 30. Circular cross-section in open channel flow. 

 
culate the geometric characteristics, the central angle (in radians) is 

calculated as: 

 
For such a cross-section, the diameter D and the flow depth d (with d<D) are typically
known.  To cal







  

D

d
21cos 1                                                           [Eq.  63] 

The geometric characteristics are calculated as: 
 

 

 )cos()sin(
4

2

 
D

A                                  [Eq.  64]

                                                                   

 

 
  DP                                                                         [Eq.  65] 

 
)sin( DT                                                               [Eq.  66] 

dians (r) and angles in degrees (o) is the same as the ratio of 
:360 = :180, or: 

 

 
Note: A full circle is composed of 360o or 2 (= 6.2832) radians.  The relationship 
between angles in ra
2

01745.
180




0



o

r

                                                        [Eq.  67] 

 
 

29.57
180





r

o

                                                            [Eq.  68] 
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________________________________________________________________________ 
Example 25 – Geometric characteristics of a circular cross-section in open channels 

 pipeline 2.5-ft in diameter is flowing at a depth of 6 inches.  Determine the geometric 

For D = 2.5 ft and d = 6 in = 6/12 = 0.5 ft, the central angle  is calculated as follows: 
 

A
characteristics of this cross-section. 
 

r

ftD 5.2 
ftd

9273.0)6.0(cos
5.0

21cos21cos 111 









    

The corresponding geometric characteristics are as follows: 
 

 

    2
22

70.0)9273.0cos()9273.0sin(9273.0
4

)5.2(
)cos()sin(

4
ft

ftD
A    

 
ftftDP 32.25.29273.0    

 
R = A/P = 0.70 ft2/2.32 ft = 0.30 ft 

 
ftftDT 2)9273.0sin(5.2)sin(    

________________________________________________________________________ 
 
Parabolic channel 
The parabolic cross-section is used to approximate some natural cross-sections.  Some 
waterways are also constructed of parabolic shape. A parabolic cross-section is 
characterized by its top width T and its depth d, as shown in the figure below. 

 
Figure 31.  Parabolic cross-section  

 
The geometric characteristics of this cross sectio
 

n are calculated as follows: 

TdA 
3

2
                                                          [Eq. 69] 
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
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T

T
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________________________________________________________________________ 
Example 26 – Geometric characteristics of a parabolic cross-section 
A parabolic waterway has a depth d = 2 ft and a top width T = 50 ft.  Determine the 
geometric characteristics of the cross-section. 
 

267.66502
3

2

3

2
ftftftTdA   
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ft
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P

A
R 33.1
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ft
ft

ft

T

A
Dh 33.1
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67.66 2

  

________________________________________________________________________ 
 

0321.2 Manning’s Equation 

The widely-used Manning’s equation was introduced earlier as an example of a non-
dimensionally homogeneous equation.  The equation, named after the Irish engineer who 
proposed it in the late 1800’s, is given by: 
 

2/1
0

3/2 SR
n

C
V u                                                [Eq.  71] 

 
where V is the flow velocity, Cu is a constant that depends on the system of units used 
(Cu = 1.0 in the S.I., and Cu = 1.486 in the E.S.), R is the hydraulic radius, So is the 
channel bed longitudinal slope, and n is the Manning’s resistance coefficient.  Manning’s 
n-values are available from a variety of sources; some values are provided in the next 
section, Table 2. Manning’s resistance coefficients for open channel flow. 
 
 
Many times, it is preferable to write the Manning’s equation in terms of the water 
discharge Q = VA:  
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2/1
0

3/2 SAR
n

C
AVQ u                                      [Eq.  72] 

 
Since the hydraulic radius is defined as R = A/P, the Manning’s equation can also be 
written as: 

2/1
03/2

3/5

S
P

A

n

C
Q u                                            [Eq.  73] 

 
 The values of A and P depend on the cross-sectional geometry and the flow depth.  If A 
and P are known, calculation of the discharge Q (see above), Manning’s n, or the bed 
slope So, is straightforward: 
 

2/1
03/2

3/5

S
P

A

Q

C
n u                                   [Eq.  74] 

and 

3/10

3/42

A

P

C

nQ
S

u
o 







 
                                 [Eq.  75] 

 
The USDA-NRCS Hydraulics Formula program allows for the calculation of the 
discharge Q for a variety of cross-sections.  Examples are provided below. (See section 
0321.4). 
 
Calculations involving the geometric parameters (e.g., flow depth, channel width) are 
more complicated because the geometric characteristics A and P are raised to fractional 
powers (5/3, 2/3), and because the geometric characteristics are a function of the 
parameters.  Solving the nonlinear equations for any of the geometric parameters 
typically requires an iterative procedure.  The calculations are best done with a 
spreadsheet, which uses a numerical analysis method to automate the iterative procedure.  
 
Although the Darcy-Weisbach equation was originally developed for pipe flow (see 
section 0331.2, Darcy-Weisbach Equation and Friction Factor), it has been adapted for 
open channel flow.  Refer to NEH 654.0609(d) for information on applying the Darcy-
Weisbach equation to open channel flow. 
 

0321.3 Manning’s Resistance Coefficient 

Manning’s resistance coefficient, n (see equation 71), is assumed to be a dimensionless 
number in modern-day practice so that the same n-value can be used in both the English 
and International Systems of units.  The n-value depends on a number of factors 
including: 
 
 

 Roughness of the channel lining 
 Changes in channel alignment 
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 Changes in cross-section geometry 
 Presence of obstructions 
 Presence of vegetation 
 Water depth 

 
 
The selection of Manning’s n depends heavily on the practitioner’s experience. Photos 
and descriptions of channels and floodplains for which n-values have been calculated, 
based on measured discharges and high water marks, are useful (See Barnes, 1967, or 
Fasken, 1963). Photo galleries of n-values have been established online. 
 
When an n-value must be selected for a channel outside a practitioner’s experience, a 
more regimented approach is sometimes helpful (See Cowan, 1956; this method is also 
presented in Chow, 1959 and Fasken, 1963). In Cowan’s approach, n-values are selected 
and summed for five channel conditions: 
 

 Bed material 
 Degree of surface irregularity 
 Variation of channel cross section 
 Effect of obstructions 
 Vegetation 

 
 
The summed n-value may be further adjusted based on the degree of channel meandering. 
 
After selection, n-values should be calibrated with any available high water marks and 
gaged flow data. In the calibration process, Manning’s n-values should be reasonably 
adjusted to match observed water surface profiles. 
 
The retardance potential of a grass-lined open channel, including vegetated earthen 
spillways, can be better evaluated with a retardance curve index rather than Manning’s n 
(See Temple, et.al., 1987). The retardance curve index is based on the grass stem length 
and stem density. 
 
The following table shows typical values of Manning’s resistance coefficients for 
constructed channels lined with different materials, as well as for natural streams, 
excavated earth channels, and floodplains.  The values were compiled from many of the 
following references: Barnes (1967), Cowan (1956), Chaudhry (1993), Chow (1959), 
Fasken (1963), French (1985), Mays (1999), Munson et al. (1998), Streeter et. al. (1998), 
and Temple et al. (1987). 
 
 
 
 
 
 

 67



EFH Chapter 3 Hydraulics                                                                           August 2009             

Table 2. Manning’s resistance coefficients for open channel flow 
 

Surface Manning's Surface Manning's 
lining  n-value lining n-value 

Concrete, finished 0.012 
Clean, straight, natural 
streams 0.030 

Concrete, unfinished 0.014 Excavated earth channels  
Gravel 0.029 Clean 0.022 
Earth 0.025 With gravel 0.025 
Wood 0.012 With brush 0.030 
Clay tile 0.014 With cobbles, stones 0.035 
Brickwork 0.015 Floodplains   
Asphalt 0.016 Pasture, farmland 0.035 
Masonry 0.025 Light brush 0.050 
Smooth steel 0.012 Heavy brush 0.075 
Corrugated metal 0.022 Trees 0.150 

 
Also see NEH654.0609(c) for additional discussion and examples of determining 
Manning’s resistance coefficient. 

0321.4 Calculations in Uniform Flow 

Calculation of discharge using Manning’s formula is straightforward for a variety of 
cross-sections by using the USDA-NRCS Hydraulics Formula program.  Three examples 
are illustrated below.  An example of normal depth calculation is also shown. 
________________________________________________________________________ 
Example 27 – Trapezoidal channel solution using USDA-NRCS Hydraulics Formula program 
A trapezoidal channel of width b = 6.5 ft and side slope z = 1.5 flows at a depth d = 3.2 ft 
on a slope So = 0.0005.  Use a Manning’s n = 0.018, and calculate the discharge. 
 
The solution is presented below using the USDA-NRCS Hydraulics Formula program for 
a trapezoidal cross-section: 
 

 

 68



EFH Chapter 3 Hydraulics                                                                           August 2009             

 
The result is Q = 106.12 cfs, with a velocity V = 2.93 fps. The program also shows the 
critical depth which is developed in the following section 0322.1. 
 
Note that a trapezoidal cross-section with side slope z = 0 represents a rectangular cross 
section. Also a trapezoidal cross-section with bottom width b = 0 represents a triangular 
cross section. 
________________________________________________________________________ 
Example 28 – Circular channel solution using USDA-NRCS Hydraulics Formula program 

A circular channel of diameter D = 3.5 ft = 3.5  12 in = 42 in flows at a depth d = 1.1 ft 
= 13.2 in on a slope So = 0.0055.  Using a Manning’s n = 0.025, calculate the discharge. 
 
The solution is presented below using the USDA-NRCS Hydraulics Formula program for 
a circular cross-section: 
 
 

 
 

________________________________________________________________________ 
Example 29 – Parabolic channel solution using USDA-NRCS Hydraulics Formula program 
A parabolic channel flows at a depth d = 5 ft and top width T = 35 ft on a slope So = 
0.021.  Using a Manning’s n = 0.017, calculate the discharge. 
 
The solution is presented below using the USDA-NRCS Hydraulics Formula program for 
a parabolic cross-section: 
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________________________________________________________________________ 
 
 
 
Example 30 – Normal depth in a wide channel  
Consider a channel with a Manning’s n = 0.015 laid on a slope So = 0.00461.   Suppose 
that the channel has a width b = 30 ft and it carries a flow Q = 100 cfs.  Determine the 
normal depth, do. 
 
A wide channel is an approximately rectangular channel whose width b is at least 10 
times larger than its depth, i.e., b/d>10.  For wide channels, the hydraulic radius can be 
approximated by the flow depth (equation 61).  The Manning’s equation for this case can 
be written as: 

o
u

o Sd
n

C
bdQ 3/2

0  

 
Solving for the normal depth: 
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________________________________________________________________________ 
 
0322 Specific Energy in Open Channels 
The specific energy in an open channel is the sum of energy heads referred to the channel 
bed, i.e., the flow depth added to the velocity head: 
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g

V
dE

2

2

                                      [Eq. 76] 

 
In terms of the discharge Q, with V = Q/A, and A = cross-sectional area, the specific 
energy is written as:  
 

2

2

2gA

Q
dE                                       [Eq. 77] 

 
A specific energy diagram is a plot of the depth of flow, d, versus the specific energy, E.  
The following figure shows the specific energy diagram corresponding to a symmetric 
trapezoidal open channel of bottom b = 2 ft and side slopes z = 1.5 carrying a flow Q = 
20 cfs.    
 

 
 

Figure 32. Specific energy curve for a trapezoidal open channel. 
 
In Figure 32, the vertical axis represents the depth of flow and the horizontal axis the 
specific energy.  Notice that the curve approaches the line d = E asymptotically as the 
depth of flow increases.  Also, the lower branch of the curve approaches the value d = 0 
as the specific energy E increases.   The shape of the curve shown is typical of specific 
energy diagrams in open channel flow.  A vertical line corresponding to a specific energy 
E = 0.8 ft is shown.  Notice that this line intersects the specific energy curve at two points 
(1) and (2), indicating that there are two possible flow depths that would produce the 
same specific energy.   These are referred to as alternate depths, d1 and d2.  The specific 
energy diagram of Figure 32 also shows that there is a point, (c), where the specific 
energy is a minimum, E = Emin, for a given cross-section and discharge.   This condition 
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is known as critical flow and the corresponding flow depth is referred to as critical depth.  
The subject of critical flow is discussed in the following section 0322.1. 
________________________________________________________________________ 
Example 31 – Specific energy diagram for a rectangular channel cross-section 
 
A diagram such as that of Figure 32 or 33 can be used to determine, graphically, the 
alternate depths of flow in a given channel.  For a rectangular channel of width b = 5 ft 
and carrying a flow of 35 cfs, a table of values of the specific energy may be produced: 
 

d(ft) A(ft2) V(fps) 
V2/2g 

(ft) E(ft) 

0.50 2.50 14.00 3.04 3.54 

0.75 3.75 9.33 1.35 2.10 

1.00 5.00 7.00 0.76 1.76 

1.10 5.50 6.36 0.63 1.73 

1.25 6.25 5.60 0.49 1.74 

1.50 7.50 4.67 0.34 1.84 

1.75 8.75 4.00 0.25 2.00 

2.00 10.00 3.50 0.19 2.19 

2.25 11.25 3.11 0.15 2.40 

2.50 12.50 2.80 0.12 2.62 

2.75 13.75 2.55 0.10 2.85 

3.00 15.00 2.33 0.08 3.08 

3.25 16.25 2.15 0.07 3.32 

3.50 17.50 2.00 0.06 3.56 

3.75 18.75 1.87 0.05 3.80 

4.00 20.00 1.75 0.05 4.05 

 
 
 
 
 
The resulting specific energy diagram is shown below. 
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Figure 33.  Specific energy curve for a rectangular open channel. 

 
To find the alternate depths corresponding to a specific energy E = 3 ft for this case, draw 
a vertical line at that value of E and find the values of d where the line E = 3 ft intercepts 
the specific energy diagram.   From the figure, the values for the alternate depths are 
estimated as d1 = 2.9 ft and d2 = 0.6 ft.  The specific energy diagram also reveals that the 
critical depth is approximately dc = 1.1 ft corresponding to a specific energy Emin = 1.7 
ft. 
________________________________________________________________________  

0322.1 Critical Flow 

The specific energy diagrams shown in Figure 32 and Figure 33 indicate that there is a 
point (c) where the specific energy is minimal (E = Emin) for a given cross-section and 
discharge. This point represents a condition known as critical flow, and the corresponding 
depth of flow is known as the critical depth.   Critical flow is important in the analysis of 
open channel flow because it represents conditions of minimal energy.  Critical flow can 
be used for the practical measurement of fluid flows, as in the case of broad-crested weirs 
or Parshall flumes (see section 0342 – Measurements in Open Channels).   
 
To determine an equation that describes critical flow conditions, one can start from the 
definition of the specific energy in terms of the discharge, equation 77, written as: 
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Specific energy E, as well as, the area A of the channel’s cross-section, is a function of 
the flow depth d.  To find the conditions of minimum energy, take the derivative of E(d) 
with respect to d and set it equal to zero: 
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The derivative dA/d(d) can be shown to be equal to the top width of the cross-section, as 
illustrated in the figure below. 
 

 
 

Figure 34.  Relationship of cross-sectional area dA, flow depth d(d), and top width T . 
 
In the figure above, the increment in area, dA, due to a small increment in depth d(d), is 
dA = T d(d); thus, dA/d(d) = T, and a critical flow equation can be written as: 
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                                                        [Eq. 78] 

 
Where the subscript, c is added to emphasize critical flow conditions. 
 
Re-writing to incorporate the critical velocity, Vc = Q/Ac:  
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The ratio A/T was defined earlier as the hydraulic depth (Dh = A/T), thus, an equation for 
critical velocity can be written as: 

1
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 ch

c

Dg

V
                                                [Eq.  79] 

 
The left-hand side of the above equation is the square of the Froude number.  This 
dimensionless number is relevant in open channel flow, and is defined, in general, as: 
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hDg

V
Fr


                                                [Eq.  80] 

 
Thus, the conditions of critical flow require that the Froude number be equal to 1. 
 
Another result that can be derived from the critical conditions equation (equation 79) is 
that the velocity head is half of the hydraulic depth:  
 

22

2
hD

g

V
                                                  [Eq.  81] 

 
Critical depth may be calculated with the USDA-NRCS Hydraulics Formula(s) program 
as shown in examples 27 and 29, provided in section 0321.4. 
 
Calculations of critical depth for prismatic open channels often involve solving nonlinear 
equations, which requires an iterative procedure.  The calculations are best done with a 
spreadsheet, which uses a numerical analysis method to automate the iterative procedure.  
 

0322.1.1 Flow Types 

For any energy larger than the minimum, E > Emin, there are two alternate depths of flow, 
as indicated in the specific energy diagrams of Figure 32 and Figure 33.  One of the 
depths, d1 is larger than the critical depth (d1>dc), corresponding to a subcritical flow, 
while the second one, d2, is smaller than the critical depth, and corresponds to a 
supercritical flow.   
 
It can be shown by calculation with the Froude number equation that for subcritical flow 
the Froude number is less than 1 (Fr<1), while for supercritical flow the Froude number 
is greater than 1 (Fr>1).   
 
If an open channel is laid on a slope So such that the normal depth of flow do is equal to 
the critical depth of flow dc  (do=dc) for a given discharge Q, then the channel bed slope 
So is said to be the critical slope for that flow, i.e., So = Sc.  The critical slope for a 
channel can be found by replacing do = dc in the Manning’s equation.    If the channel 
bed slope is smaller than the critical slope (So<Sc), the normal depth of flow is larger 
than the critical depth (do>dc), and the channel is said to have a mild slope.  On the other 
hand, if the channel bed slope is larger than the critical slope (So>Sc), the normal depth 
of flow is smaller than the critical depth (do<dc), and the channel is said to have a steep 
slope.   The different types of uniform flow possible in an open channel, and their 
corresponding slopes, are summarized in Table 3 and Figure 35. 
 
 

Table 3. Types of uniform flow in open channels. 

Type of flow Flow depth Slope 
Type of 

slope 
Froude 
number 
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Subcritical do> dc So< Sc Mild Fr < 1 

Critical do= dc So= Sc Critical Fr = 1 

Supercritical do< dc So. > Sc Steep Fr > 1 
 
 

 
 

Figure 35. Types of uniform flow in open channels. 
 
It’s worth noting that the celerity, or wave speed, c, of a surface wave in a shallow open 
channel of depth d is the same as the critical velocity Vc.  If the flow is subcritical, c>V, 
and wave fronts from a surface disturbance will travel downstream at a speed c+V >0, 
while travelling upstream at a speed c-V>0. Here, V is the flow velocity.  Thus, surface 
disturbances in subcritical flow are able to travel both upstream and downstream from 
their point of origin.   On the other hand, if the flow in supercritical, V>c, the velocity of 
surface disturbances travelling downstream is still positive c+V >0, but that of 
disturbances traveling upstream is negative c-V<0.  This last result indicates that these 
disturbances cannot travel upstream.  Thus, surface disturbances in supercritical flow can 
only travel downstream from points of origin.    

0322.1.2 Critical Flow in a Rectangular Channel 

In a rectangular channel, the area and the top width are A = bd and T=b.  Thus, equation 
78 produces the result: 
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Introducing the unit discharge (or discharge per unit width of channel): 
 

b

Q
q                                                                 [Eq.  82] 

 
 Substituting the unit discharge into the equation above, and solving for the critical depth:  

 

3

2

g

q
dc                                                            [Eq.  83] 

________________________________________________________________________ 
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Example 32 – Critical flow depth in a rectangular channel  
Consider a rectangular channel of width, b = 30 ft and carrying a flow Q = 100 cfs. 
Determine the critical depth.  
 

q = Q/b = 100 cfs/30 ft = 3.33 ft2/s, 
 

ft
g

q
dc 70.0

2.32

33.3
3

2

3

2

  

________________________________________________________________________ 
 
Since for a rectangular channel the hydraulic depth is the same as the flow depth (Dh = 
d), the critical specific energy (minimum energy) is found to be equal to 3/2 of the critical 
depth (combining equations 76 and 81): 
 

cc dEE
2

3
min                                               [Eq.  84] 

 
To find the critical slope, we can use the Manning’s equation (equation 73), with d = dc, 
A = bdc, P = b + 2dc, and So = Sc: 
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Solving for critical slope: 
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________________________________________________________________________ 
Example 33 – Critical slope in uniform open-channel flow with rectangular cross-section 
A rectangular channel of width b = 4 ft, and Manning’s n = 0.012, is laid on a slope So = 
0.00015 and carries a discharge Q = 20 cfs.  (a) Determine the critical depth of flow.  (b) 
Determine the critical slope. (c) What type of uniform flow is to be expected in this 
channel?  
 
(a) First, determining the unit discharge: 
 

q = Q/b = (20 cfs)/(4 ft) = 5 ft2/s 
 
The critical depth is calculated as:  
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(b) The critical slope is:  
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(c) Since So<Sc, the channel slope is mild, and a subcritical uniform flow is to be 
expected in this channel. 
________________________________________________________________________ 
 

0322.2 Obstacles in Open Channels 

Consider a horizontal rectangular open channel that includes a hump of height z at the 
bottom as illustrated on the left-hand side of Figure 36.  The figure also shows the 
specific energy diagram for a given discharge Q in reference to the original channel bed. 
 
 
 

 
Figure 36.  Hump at the bottom of a horizontal rectangular channel. 

 
 
Figure 36 shows the flow at a subcritical depth d1 upstream of the hump, and at a 
subcritical depth d2 over the hump.  The figure also shows the energy heads in sections 
(1) and (2), assuming no energy losses over the hump.  The energy equation written 
between sections (1) and (2) can be written as: 
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Alternatively, this equation can be written as: 
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The specific energy diagram shows the energy levels E = E1 and E = E2 separated by a 
distance z, as indicated by equation 87, with E1>E2.   The depth of flow corresponding 
to energy level E = E2 is d2 < d1, thus, the water surface over the hump drops as 
illustrated in Figure 36.  
 
If the flow depth is known at section (1), the specific energy E1 can be calculated as: 
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Combining equations 86 and 87 and making use of the continuity equation gives an 
equation to determine the depth, d2: 
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________________________________________________________________________ 
 
 
 
Example 34 – Change in channel bed elevation in a rectangular channel  

Refer to Figure 36.  A hump of height z = 0.25 ft is placed on a rectangular open 
channel of width b = 5 ft carrying a discharge Q = 20 cfs.  If the flow depth upstream of 
the hump is d1 = 2 ft, determine the flow depth atop the hump, d2. 
 
Applying equation 88 and using several trials, two values were found for d2, 1.73 ft and 
0.42 ft. The iterative calculations may be facilitated by use of a spreadsheet. Since the 
flow for d1 = 2 ft is subcritical, the correct value is d2 = 1.73 ft (subcritical flow) 
________________________________________________________________________ 
 
To confirm d2 = 1.73 ft, consider the specific energy diagram in Figure 36. If the flow 
conditions upstream of the hump correspond to point (1) in the diagram, the flow 
conditions atop the hump would correspond to point (2).  If the flow conditions upstream 
of the hump correspond to point (1’) in the diagram, the flow over the hump would 
correspond to point (2’).   In summary, if the flow upstream of the hump is subcritical, 
the flow above the hump should be subcritical (or at most, critical), while if the flow 
upstream of the hump is supercritical, the flow above the hump should be supercritical 
(or at most, critical).    
 
To check whether the flow at sections (1) and (2) are subcritical or supercritical, one can 
calculate the Froude number for those sections: 
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The Froude numbers at sections (1) and (2) must both be either smaller than one (Fr1<1 
and Fr2 < 1) for sub-critical flow, or larger than one (Fr1 > 1 and Fr2 > 1) for 
supercritical flow.    
 
 
 
________________________________________________________________________ 
Example 35 – Calculation of the Froude number in a rectangular channel 
For the previous example 34, d1 = 2.00 ft, Q = 20 cfs, b = 5 ft, and V1 = Q/A = 2 ft/s.  
The Froude number at section (1) is: 
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Thus, the flow upstream of the hump for this example is subcritical.  Two possible depths 
of flow atop the hump were found, d2 = 1.73 ft and d2 = 0.42 ft.  The Froude numbers 
corresponding to these depths are: 
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 For d2 = 0.42 ft, 1589.2
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Thus, d2 = 1.73 ft corresponds to a subcritical flow atop the hump, while d2 = 0.42 ft, 
corresponds to supercritical flow atop the hump.  Since the flow upstream was 
subcritical, the correct answer is d2 = 1.73 ft.   
________________________________________________________________________ 
 
There is a possibility that the hump height z takes the value zmax so that the flow 
conditions on top of the hump are critical.  In the specific energy diagram of Figure 36, 
critical flow conditions correspond to point (c), by making z = zmax, E2 = Emin.  If the 
flow atop the hump is critical, the depth of flow d2 (above the hump) is the critical depth 
dc, which, for a rectangular channel, can be calculated using equations 83 or  84.   
 
If critical flow conditions are achieved atop the hump, it may be possible to measure the 
depth of flow in that location (d2 = dc). The discharge can then be calculated from 
equations 82 and 83, combined and rearranged:  
 

3
cgdbQ                                                   [Eq.  89] 
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This unique relationship between the flow discharge Q and the depth atop the hump 
under critical conditions dc allows the use of relatively high humps as a discharge-
measuring device known as a broad-crested weir.  See section 0342.4, Broad-crested 
Weirs and and section 0342.6.1, Long-throated Flumes  for additional examples and 
applications.  
________________________________________________________________________ 
 
Example 36 – Rating curve for a broad-crested weir 
Draw the rating curve (i.e., Q –vs.-dc) for a broad-crested weir in a channel that is 3.5-ft 
wide, for the range 0 < dc < 5.0 ft.   
 
The table below was developed by applying equation 89 to produce the rating curve as 
shown below. 
 

 
________________________________________________________________________ 
 
0323 Momentum Analysis in Open Channels 
The energy loss represented by hf in the energy equation is not easily determined in the 
analysis of a hydraulic jump (see the following section 0323.1 for hydraulic jump 
analyses). The principle of impulse-momentum or conservation of momentum is more 
easily applied (than the energy equation) to analyses involving high internal energy 
changes, such as hydraulic jump or sluice gate flow analyses. Momentum may be thought 
of as “mass-in-motion” and an impulse as change in momentum.  The principle of 
conservation of momentum is used to determine forces on moving fluids.  Consider, for 
example, the case of the flow under a sluice gate illustrated in Figure 26.  Figure 37 
below shows a sluice-gate control volume with the forces acting on it, and the flow of 
momentum through the control surfaces.   
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Figure 37.  Forces and flow of momentum for sluice gate flow. 
 
Figure 37(a) shows hydrostatic forces Fp1 and Fp2 acting in the upstream and downstream 
sections of the control volume for the flow under a sluice gate.  Included also in Figure 
37(a) is the force FG that the gate exerts on the control volume.  By Newton’s third law 
(principle of action-reaction), the flow exerts a force -FG in the opposite direction on the 
gate.  Figure 37(b) shows the flow of momentum in (QV1) and out (QV2) of the control 
volume through the control surfaces at sections (1) and (2), respectively.   
 
The principle of impulse-momentum states that the sum of forces on the control volume 
is equal to the net flow of momentum out of the control volume, i.e., momentum flow out 
minus momentum flow in.  This principle can be expressed as the following vector 
equation: 
 

F = (QV) = (QV)out - (QV)in                                  [Eq.  90] 
 
Specifically, for the case illustrated in Figure 37: 
 

Fp1  - FG  - Fp2 = QV2 – QV1 
 

from which it follows that:                      
 

FG = (Fp1+QV1) - (Fp2+QV2) 
 
The hydrostatic forces Fp1 and Fp2 can be calculated by using equation 16: 
 

Fp1 = (hcA)1,    Fp2 = (hcA)2 

 
Where hcA stands for the first moment of area with respect to the free surface of a given 
cross-section (hc is the depth of the centroid of the cross-section, and A is the area).  Also, 
replacing V1 = Q/A1 and V2 = Q/A2, and using /g, the expression for FG becomes: 
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The quantities between parentheses in the equation above is defined as the momentum 
function for open channel flow: 
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                                                       [Eq.  91] 

 
The force on the gate can now be written as: 
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For a rectangular channel, A = bd, and hc = d/2, thus, hcA = ½ bd2.  Also, using the 
concept of the unit discharge (discharge per unit width), q = Q/b, the term Q2/gA = 
q2b/gd.  The momentum function (equation 91) becomes: 
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Continuing, a unit momentum function (or momentum function per unit width) for a 
rectangular open channel can be defined as: 
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qd

b

M
m F

F

22

2
                                             [Eq.  93] 

 
A unit momentum function diagram for a rectangular cross-section is a plot of the channel 
depth (d) against the unit momentum function (mF), as illustrated in the following 
example. 
 
________________________________________________________________________ 
 Example 37 – Momentum function diagram for a rectangular channel 
A rectangular channel of width b = 10 ft carries a discharge Q = 132 ft3/s; produce a unit 
momentum function diagram for this channel.   
 
The unit discharge is: 
 

q = Q/b = (132 ft/s3)/(10 ft) = 13.2 ft2/s. 
 
The unit momentum function diagram, below, was developed by applying equation 93: 
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________________________________________________________________________ 
 
 
Example 38 – Calculation of force on sluice gate 
In example 15 (the sluice gate of Figure 26), the values b = 10 ft, d1 = 3.5 ft, and d2 = 
1.0 ft were used to calculate Q = 132 ft/s3, i.e, q = Q/b = 13.2 ft2/s.  Calculate the force 
that the flowing water exerts on the gate. 
 
The force can be calculated by using the unit momentum function as follows: 
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With  = 62.4 lb/ft3, the force on the gate, as given by equation 92, is: 
 

         2121 FFFFG mmbMMF    

 
  lbftftftftlbFG 24.109891.567.710/4.62 223   

________________________________________________________________________ 
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An analysis of the unit momentum function diagram used in example 37 above indicates 
that there are two possible depths associated with a given value of mF.  This is illustrated 
in the figure below.  These two depths are referred to as conjugate depths. 
 

 
Figure 38.  Conjugate depths in the unit momentum function diagram for a rectangular open 

channel. 
 
The unit momentum function diagram also shows that there is a point where the unit 
momentum function becomes a minimum, mF = (mF)min.  It can be shown that this point 
of minimum momentum function corresponds to critical flow.   Thus, for a given value of 
the momentum function there is a subcritical and a supercritical depth of flow, the 
conjugate depths. 
 

0323.1 Hydraulic Jumps 

A hydraulic jump consists of a sudden increase of water depth in an open channel from a 
supercritical depth (d1<dc) to a subcritical depth (d2>dc).  A hydraulic jump could occur 
at the foot of a spillway as illustrated in the following figure. 
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Figure 39.  Hydraulic jump produced by a stilling basin at the base of a spillway. 

 
 
 
The figure below, shows a photograph of a hydraulic jump at the base of a model of a 
dam spillway. 

 
Figure 40. Hydraulic jump observed at the foot  of a model spillway (Courtesy of the Utah Water 

Research Laboratory). 
The hydraulic jump is typically an abrupt raise in the water surface showing a rough 
surface with strong turbulence and producing a large amount of air entrainment.  This 
area of strong turbulence and marked air entrainment is referred to as the roller of the 
hydraulic jump.  The sketch of the hydraulic jump shown in Figure 39 indicates an 
energy loss hj through the jump. 
 
Since energy is not conserved through the jump, analysis of the hydraulic jump is better 
performed through the use of the impulse-momentum principle.  Forces on a control 
volume enclosing the jump, as well as the momentum flow through the corresponding 
control surfaces, are shown below. 
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Figure 41. Forces and flow of momentum for a hydraulic jump. 
 
Besides the hydrostatic forces Fp1 and Fp2, the control volume is affected by a shear force 
at the wetted perimeter Fs.   Using the principle of impulse-momentum for the jump 
results in an equation similar to that of the force on a sluice gate (equation 92): 
 

    21 FFS MMF    

 
Since the hydraulic jump occurs along a relatively small length of the channel, the shear 
force Fs is negligible, and the impulse-momentum principle for the hydraulic jump 
results in: 

(MF)1 = (MF)2 
 
If the hydraulic jump occurs in a rectangular channel, the principle of impulse-
momentum produces the result: 
 

2

22
2

1

22
1

22 gd

qd

gd

qd
  

 
The depths of flow upstream (d1) and downstream (d2) of the jump are known as 
conjugate depths. 
 
Algebraic manipulation of the above equation gives the following results for a horizontal 
rectangular-channel hydraulic jump: 
 

 Unit discharge (discharge per unit width): 
 

2

)( 2121 ddddg
q


                                     [Eq.  94] 

 
 Ratio of depths: 
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            or, 
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The energy head loss is equal to the difference in specific energy before and after the 
jump: 
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                                       [Eq.  97] 

 
The length of the jump, Lj, cannot be determined from energy or momentum 
considerations.  However, experimental results reveal that: 
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L j
                                             [Eq.  98] 

Thus, the average value can be used as a first approximation to the jump length:  
 

Lj = 5d2                                               [Eq.  99] 
 
________________________________________________________________________ 
Example 39 – Discharge, head loss, and length of a hydraulic jump in a rectangular channel 
A hydraulic jump is observed in a rectangular channel and the upstream and downstream 
depths are measured to be d1 = 0.50 ft and d2 = 3.5 ft, respectively.  Please refer to 
Figure 39 as a schematic.  Determine (a) the discharge per unit width, (b) the energy head 
loss through the jump, and (d) an approximation to the jump length. 
 
 
 
The unit discharge is (equation 94): 
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The energy head loss is (equation 97): 
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An approximation to the jump length is (equation 99): 
 
 

Lj = 5d2 = 53.5 ft = 17.5 ft                                            
________________________________________________________________________ 
Example 40 – Flow depth, head loss, and length of hydraulic jump in a rectangular channel 
A hydraulic jump takes place in a rectangular channel of width b = 5.5 ft that carries a 
discharge Q = 25 cfs.  Please refer to Figure 39 as a schematic.  If the depth upstream of 
the jump is determined to be d1 = 0.75 ft, by means of water surface profile calculations, 
(see section 0324) determine: (a) the depth downstream of the jump, (b) the energy head 
loss through the jump, and (c) an approximation to the jump length. 
 
The unit discharge is:  
 

q = Q/b = 25 cfs/5.5 ft = 4.55 ft2/s. 
 
From equation 95, d2 is found: 
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The energy head loss is (equation 97): 
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An approximation to the jump length is (equation 99): 
 

Lj = 5d2 = 50.987 ft = 4.94 ft                                            
 
________________________________________________________________________ 
 
Figure 42 below illustrates a hydraulic jump occurring over an obstacle or a baffle block.   
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Figure 42.  Hydraulic jump over a baffle block. 
 
For the case illustrated in Figure 42, equations 94 through 97 no longer apply because the 
force that the obstacle or block exerts on the flow is not negligible.  However, the 
principle of impulse-momentum may be applied in the same manner as it was for sluice-
gate flow: 
 

    21 FFo MMF                                               [Eq.  100] 

 
Where (MF)1 and (MF)2 are the momentum functions (equation 92) for the sections 
upstream and downstream of the hydraulic jump, respectively.  For a rectangular cross-
section, the above equation can be written as: 
 

])()[( 21 FFo mmbF                                            [Eq. 101] 

Where ω is the specific weight of water, b is the channel width, and the unit momentum 
function, mF, is calculated by equation 93. 
________________________________________________________________________ 
Example 41 – Calculation of force on an obstacle producing a hydraulic jump in a rectangular 
channel 
A hydraulic jump in a rectangular channel of width b = 10 ft is produced by an obstacle 
at the channel bed. Please refer to Figure 42 as a schematic. If the depths upstream and 
downstream of the jump are determined to be d1 = 0.95 ft and d2 = 1.25 ft, respectively, 
and the discharge in the channel is Q = 80 ft/s3.  Calculate the force that the flowing 
water exerts on the obstacle. 
 
The unit discharge is:  

q = Q/b = 80 cfs/10 ft = 8 ft2/s 
 
The force can be calculated by using the unit momentum function (equation 93): 
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With  = 62.4 lb/ft3, the force on the obstacle, as given by equation 100, is: 
 

         21210 FFFF mmbMMF    

 
  lbftftftftlbF 6.107371.2543.210/4.62 223

0   

________________________________________________________________________ 
 
0324 Varying Open Channel Flow 
Uniform flow has a contant depth and is achieved when the driving force (gravity) is in 
balance with the resisting force (shear forces) on the channel boundary.   The entrance 
from a reservoir into a long open channel, as illustrated in Figure 43, below, may include 
a zone of varying flow depth, before uniform flow is achieved. 
 

 
Figure 43. Varying flow from a reservoir leading to uniform flow in an open channel. 

 
A zone of varying flow depth, as the one illustrated in Figure 43, is referred to as 
gradually varied flow (GVF).  Gradually varied flow zones may be very long.  Hydraulic 
jumps (Figure 39) or flows over an obstacle (Figure 42), on the other hand, are examples 
of rapidly varied flow, with the flow depth changing quickly.  Flow depths generally vary 
over the entire length of natural channels.   
 
0324.1 Gradually-varied Flow  
Figure 25 shows the energy heads in a gradually varied flow between two sections 
separated by a horizontal distance x.  The slopes shown in that figure include: 
 

 Slope of the energy line, Sf = hf /L, where hf = energy head loss, and L = length 
between sections (1) and (2) measured along channel.  

 
 Slope of the water surface, Sw = (WS1-WS2)/x,  where WS1 and WS2 are the 

water surface elevations at sections (1) and (2) 
 

 Slope of the channel bed, So = (z1-z2)/x,  where z1 and z2 are the bed elevations 
at sections (1) and (2) 
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Because typically the channel bed slope So is small, the length of channel L is 
approximately equal to the horizontal length x between sections (1) and (2), i.e., L  x, 
and Sf   hf /x. 
 
Two equations useful in calculating GVF parameters include the energy equation (see 
section 0317.4), written as: 
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And Manning’s equation, used to estimate the energy slope, Sf:  
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Figures 44 and 45 illustrate two common forms of GVF.  In Figure 44 a uniform flow in 
a mild-slope channel approaches an overfall.   The GVF curve approaches the line of 
uniform flow (do) asymptotically at (a), while approaching the line of critical flow (dc) 
almost perpendicularly at (b).  The GVF curve in the figure below is referred to as a 
drawdown curve. 
 

 
 
 

Figure 44.  Gradually-varied flow (GVF) near an overfall. 
 
Another example of GVF is shown in Figure 45.  In this case, a weir across a channel 
forces the water depth above the normal depth of flow.  The figure shows a GVF curve 
that approaches the normal depth line asymptotically at point (a).  The curve in the figure 
below is referred to as a backwater curve. 
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Figure 45.  Gradually-varied flow (GVF) produced by a weir. 

 

0324.2 Classification of Gradually-Varied Flow  

GVF curves cannot cross the lines of normal depth (do) or of critical depth (dc).   Thus, 
backwater curves or drawdown curves must be contained within the region limited by the 
channel bed and the closest of the do or dc lines, the region between those lines, or the 
region above the highest of the do and dc lines. These two or three regions are indicated 
in Figure 46.  GVF curves are classified according to the type of slope of the channel and 
the region where they occur.  For example, a curve above the do line in a mild-slope 
channel would be classified as M1, and so on.  The different types of gradually varied 
flow curves are illustrated in Figure 46. 
 
 

 
 

Figure 46.  Classification of gradually-varied flow (GVF). 
 
 
The curves of Figure 46 can be used to sketch the type of gradually-varied flow expected 
on a given channel. 
 
The following figure illustrates the type of curves that can be generated by a sluice gate 
placed across the channel, so that it produces a supercritical flow under the gate.  The 
channel ends with an overfall. 
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Figure 47. Gradually-varied flow (GVF) curves in a mild-slope open channel with a sluice gate and 
overfall. 

 
The sluice gate in Figure 47 produces an M1 curve upstream, and an M3 curve 
downstream of the gate.   The M3 curve ends in a hydraulic jump (J) that raises the water 
level to the normal depth of flow before reaching the overfall.   The overfall produces an 
M2 curve at the downstream end of the channel.   
 
 

0324.3 Standard step method 

Manning’s equation provides a good estimate of flow depth, when uniform flow 
conditions exist.  See section 0321.4, Calculations in Uniform Flow.  Because uniform 
flow conditions of constant depth and discharge do not normally exist in natural streams 
and in many reaches of constructed channels, other methods, such as the standard step, 
are needed to more accurately calculate flow profiles. 
 
The standard step method calculates a gradually varied flow (GVF) profile by solving the 
energy equation with an iterative procedure.  One way of applying the method is by 
varying the flow depths.  The calculations start at a point where the depth is known and 
the depth is changed by small increments or decrements until reaching a specified depth 
value.  For each depth increment or decrement, the distance between sections, x, for the 
given depth change, is calculated.   
 
To develop an equation for the standard step method one may start from equation 102, re-
written as follows: 

fhEzEz  2211                                 [Eq.  104] 

 
Using z1-z2 = Sox and hf = Sfx, we can solve for x, the horizontal distance between 
sections (1) and (2): 
 

of SS

EE
x




 21                                          [Eq.  105] 

 
The value of the energy slope to use is based on the Manning’s equation by using the 
average velocity and hydraulic radius for sections (1) and (2): 
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The energy slope is calculated using Manning’s equation as: 
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The calculation procedure starts by selecting a depth d1 and then postulating a depth d2 = 
d1  d, e.g., you could have d1 = 2.5 ft and d2 = 2.6 ft (with d = 0.1 ft).  Then, 
proceeding to calculate the areas (A1, A2), wetted perimeters (P1, P2), hydraulic radii 
(Rh1, Rh2), velocities (V1, V2), specific energies (E1, E2), average hydraulic radius (Rh), 
average velocity (V), energy slope (Sf), and finally the increment ∆x from equation 105 is 
calculated.  The procedure is repeated then by taking d1 = d2 and postulating a new value 
of d2.  Tables of the calculation results are shown in the following example. 
 
 
________________________________________________________________________ 

Example 42 – Gradually-varied flow calculation in a rectangular channel 
A rectangular flume is 5-ft wide (b = 5ft) and carries a flow Q = 60 cfs.  The bed slope is 
So = 0.0006, and the Manning’s resistance coefficient is n = 0.012.  At a certain section 

the depth is d1 = 3 ft.  Find the distance x to the section where the depth is 2.5 ft. 

 
Using depth decrements of d = -0.1 ft, the depths d = 3.0 ft, 2.9 ft, 2.8 ft, 2.7 ft, 2.6 ft, 
and 2.5 ft are used in the calculation.  Calculations are shown for the depths, 3.0 ft and 
2.9 ft.  For a rectangular cross section the area and wetted perimeter are given by A = bd 
= 5d, P = b + 2d = 5+2d, respectively.  Thus: 
  

 For d1 = 3 ft, A1 = 5 3 = 15 ft, P1 = 5 + 2 3  = 11 ft, Rh1 = A1/P1 = 1.36 ft, V1 

= Q/A1 = 4 ft/s, E1 = d1 + V1
2/2g = 3.2484 ft 

 
 For d2 = 2.9 ft, A2 = 5 2.9 = 14.5 ft, P2 = 5 + 22.9  = 10.8 ft, Rh2 = A2/P2 = 

1.34 ft, V2 = Q/A2 = 4.14 ft/s, E2 = d2 + V2
2/2g = 3.166 ft 

The average velocity and hydraulic radius are: 
 

V = (V1+V2)/2 = 4.07 ft/s 
 

Rh = (Rh1+Rh2)/2 = 1.35 ft 
 
The energy slope is calculated as follows: 
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Finally, the distance between cross sections is calculated as: 
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  The standard step solution is presented in the following tables. 

 
  Wetted Hydraulic Flow Specific Average Average

Depth Area Perimeter Radius Velocity Energy Hyd. R. Velocity 
d A P R = A/P V E R V

3.000 15.000 11.000 1.364 4.000 3.248 - - 
2.900 14.500 10.800 1.343 4.138 3.166 1.353 4.069 
2.800 14.000 10.600 1.321 4.286 3.085 1.332 4.212 
2.700 13.500 10.400 1.298 4.444 3.007 1.309 4.365 
2.600 13.000 10.200 1.275 4.615 2.931 1.286 4.530 
2.500 12.500 10.000 1.250 4.800 2.858 1.262 4.708 

 
  Energy Spec. En. Distance Cumulative 

Depth Slope Increment Increment Distance 

d S E x x 
3 - - - 0 

2.9 0.000721 0.0826 680.11 680.11 
2.8 0.00079 0.0807 425.5 1105.61 
2.7 0.000867 0.0785 293.53 1399.14 
2.6 0.000957 0.076 213.01 1612.15 
2.5 0.001059 0.073 158.91 1771.05  

 
 
The cumulative distance to the section where the depth is 2.5 ft is shown to be 1771 ft.   
________________________________________________________________________ 
 
The best results in the standard step method are achieved by using an increment or 
decrement of depth as small as possible. Thus, implementation of the standard step 
solution in spreadsheet software facilitates the calculation, especially for the trapezoidal, 
parabolic, and circular shapes that occur in prismatic open channels. 
 
To achieve best results in the standard step method, the step computations should be 
carried upstream for subcritical flows and downstream for supercritical flows. 
 
For analyses of gradually-varied flow in prismatic or natural channels, one can use the 
U.S. Army Corps of Engineers’ Hydrologic Engineering Center’s HEC-RAS software.  
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(RAS stands for River Analysis System.)  The latest version of HEC-RAS can be 
downloaded at   
 

http://www.hec.usace.army.mil/software/hec-ras/ 
 
HEC-RAS utilizes an iterative standard step method to solve for gradually varied flow.   
Details on the operation of HEC-RAS are available at the website shown above. 
 
 
0325 Sediment Transport  
Earth-lined channels may carry sediments if the water velocities are large enough to 
produce erosion of the channel linings.  Rivers may carry significant sediment load when 
the water discharge increases.   The ability of a river to erode and carry sediments 
depends on the hydraulic characteristics of the stream as well as on the sediment 
properties. Refer to NEH 654, Chapter 13, for additional sediment transport information. 

0325.1 Sediment Properties 

The size of sediments can be determined by performing a sieve test on a sample of 
sediments.  For very fine sediments a settling test performed in a settling tube may be 
necessary to determine the size distribution of the particles.  Typically, sediment size 
follows a log-normal distribution of probabilities, with a median size D50, meaning the 
size for which 50% of the sample mass is retained.  The diameters D84 and D16 represent 
the diameters for which 15.9% and 84.1% of the sample mass is retained.  The standard 
deviation of the logarithms of the diameters is given by: 
 

  
16

84

D

D
                                                   [Eq. 108] 

 
If the diameters of the sediment sample do not follow a log-normal distribution, the 
geometric mean can be used as a representative value of the sediment size: 
 
 

  1684 DDDg                                             [Eq.  109] 

________________________________________________________________________ 
Example 43 -  Sediment size data analysis  
Sediment size data from a sieve analysis can be used to determine the characteristic 
diameters for a sediment sample.  This information is useful in the prediction of sediment 
transport discharges in rivers and streams.  The table below shows the results from a 
sieve analysis of a sample of sandy sediment: 

 

sieve 
opening 

(mm) 0.495 0.417 0.351 0.295 0.246 0.208 0.175 0.147 0.124 0.104 0.088 0.074 pan 
amount 
retained 

(g) 0.85 1.56 3.08 3.82 5.35 5.69 4.31 5.06 2.37 1.16 0.21 0.12 0.04 
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Using a probability-logarithmic plot, determine the values of D16, D50, and D84, calculate 
the standard deviation of the logarithms, and the geometric mean. 
 
From the table given above, we can produce the following table to determine the 
percentage finer than the given sieve size. 
 
 
 

sieve weight percentage cumulative   
opening retained weight % weight percent 

(mm) (g) retained retained finer 
0.495 0.85 2.53 2.53 97.470 
0.417 1.56 4.64 7.17 92.830 
0.351 3.08 9.16 16.33 83.670 
0.295 3.82 11.36 27.69 72.310 
0.246 5.35 15.91 43.6 56.400 
0.208 5.69 16.92 60.52 39.480 
0.175 4.31 12.82 73.34 26.660 
0.147 5.06 15.05 88.39 11.610 
0.124 2.37 7.05 95.44 4.560 
0.104 1.16 3.45 98.89 1.110 
0.088 0.21 0.62 99.51 0.490 
0.074 0.12 0.36 99.87 0.130 
pan 0.04 0.12 100.00 0.000 
sum 33.62 100.00 - - 

 
 
The probability-logarithmic plot is shown below.  The x axis denotes the sieve opening, 
in mm, in the logarithmic scale, while the y axis displays the percentage finer in the 
probability scale.  The plot also shows the lines corresponding to 84.1%-, 50%-, and 
15.9%-finer which are used to determine the values of D16, D50, and D84.  These values 
are: 

D16 = 0.15 mm, D50 = 0.23 mm, D84 = 0.34 mm 
The standard deviation of the logarithms of the diameters is: 
 

505.1
15.0

34.0

16

84 
mm

mm

D

D
  

 
The geometric mean of the diameters is: 
 

mmmmmmDDDg 225.015.034.01684   
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________________________________________________________________________ 
 
In the analysis of suspended sediment, i.e., those sediment particles that are entrained in 
the moving fluid, it’s important to consider the settling velocity of the sediments.  
Theoretical analysis of settling velocities indicate that the terminal velocity w of a 
spherical particle of diameter D is given by  
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                           [Eq.  110] 

 
Where CD is the drag coefficient, g is the acceleration of gravity, and  and s are the 
densities of the fluid and of the solid sediment particles, respectively.  A typical value 
used for the specific density (gravity) of the solid sediment particles (sand) is Ss =s / = 
2.65.  The drag coefficient is related to the Reynolds number of the particle, namely:  


Dw 

Re                                                 [Eq.  111] 
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where  is the viscosity of water. 
 
For laminar flow, i.e., Re < 2: 
 







  ...Re

20480

71
Re

1280

19
Re

16

3
1

Re

24 32
DC               [Eq.  112] 

 
 
The approximation CD = 24/Re, applies for Re < 0.5.   For turbulent flow, with Re < 800, 
the drag coefficient on a spherical particle is approximated by: 
  
 

 687.0Re150.01
Re

24
DC                                [Eq.  113] 

________________________________________________________________________ 
Example 44 - Determining settling velocity of spherical sediments 
Determine the settling velocity of a spherical sediment particle with a diameter D = 0.23 
mm = 7.5410-4 ft,  in water at 60 oF ( = 1.21710-5 ft2/s).  Use Ss = 2.65 for the specific 
gravity of the solid particles. (This type of information is useful for designing sediment 
settling basins). 
 
Determining the settling velocity, w, is a trial and error solution, since the settling 
velocity is related to a drag coefficient, which is related to the Reynolds number, which 
is, in turn, related to the settling velocity (the parameter to be calculated). 
 
For efficient calculations, an iterative procedure involving the above equations 110 thru 
113 may be programmed in a spreadsheet to obtain the settling velocity, w = 0.0929 ft/s, 
with Re = 5.76, (in the turbulent regime). 
________________________________________________________________________ 
 
 
The results from the previous example apply to spherical particles only.  Natural 
sediments may have other shapes; therefore, the effect of that shape must be taken into 
account when calculating the settling velocity.   A simple approach consists in 
multiplying the velocity calculated with equation 110 by a shape factor : 
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 Some typical values of the shape factor are provided in the table below. 
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Table 4. Shape factors for sediment settling velocity 
 

Particle Shape 
shape factor,  
sphere 1.000 

cube-octahedron 0.906 
octahedron 0.846 

cube 0.806 
tetrahedron 0.670 

________________________________________________________________________ 
Example 45 – Determination of settling velocity for non-spherical sediments 
In the previous example, a settling velocity wsphere = 0.0929 ft/s for a spherical particle 
was found.  If the particle shape is actually an octahedron, what is the settling velocity? 
 
From the table, a shape factor  = 0.846 for an octahedron. The settling velocity for the 
particle is: 
 

w =  wsphere = 0.8460.0929 ft/s = 0.0786 ft/s 
________________________________________________________________________ 
 
For additional information on sediment properties and settling velocity calculations, refer 
to:  Raudkivi (1976), ASCE (2006), and  NEH 654, Chapter 7, Basic Principles of 
Channel Design; Chapter 8, Threshold Channel Design; Chapter 9, Alluvial Channel 
Design; and Chapter 13, Sediment Impact Assessments. 
 

0325.2 Threshold of Sediment Motion 

Channels may be classified as threshold or alluvial. Sediment passes through a threshold 
channel with little impact on the channel boundary.  An alluvial or movable-bed channel 
is more active, with an exchange of sediment between the channel boundary and the flow. 
 
In a threshold channel, the applied forces of the flow are less than the threshold for 
movement of the boundary material. Equation 56 (section 0321) provides an expression 
for the average shear stress at the bed of an open channel in uniform conditions, and is 
repeated here:  
 

oho SR    

 
Define the shear velocity, v*, as: 
 


 ov 

*
                                                                [Eq.  115] 
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Although this is not a velocity that can be measured  in the flow, the quantity defined 
above has the units of a velocity, and, being related to the bed shear stress, is 
appropriately named the shear velocity. 
 
 
The bed shear stress, o, and the shear velocity, v*, (u* is used interchangeably with v*)           
can be used to define a set of parameters to analyze the threshold of sediment motion in 
open channels.  The two parameters to consider are a Reynolds number based on the 
shear velocity:  
 



Dv
*                                                                  [Eq.  116] 

 
and a dimensionless shear stress: 
 

DSD s

o

s

o




 





)1()(
                                         [Eq.  117] 

 
where  and  (“γ” is used interchangeably with “”)are the kinematic viscosity and 
specific weight of water, respectively, and D and s are the diameter and the specific 
weight of the sediments.   The specific gravity of the sediments is Ss = s / (Ss = 2.65 
for sand). 
 
NEH 654, Chapter 8 (Threshold Channel Design), describes the origin and meaning of 
the Shield’s diagram.  This diagram, shown in Figure 48, and based on the Reynolds 
number and the dimensionless shear stress (equations 116 and 117), has been extensively 
used for determining the threshold of sediment motion in open channel flow.  For a given 
flow, points above the Shields’s curve indicate sediment motion, whereas points below 
the Shield’s curve would show no sediment motion.   
 

 
Figure 48. Shield’s diagram for determining the threshold of sediment motion in open channel flow. 
 
________________________________________________________________________ 
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Example 46  – Sediment motion threshold analysis using Shield’s diagram 
A rectangular channel of width b = 10 ft, with Manning’s n = 0.015, and laid on a slope 
So = 0.005, flows at a normal depth do = 0.5 ft.  Using Shield’s diagram, determine if the 
flow is able to move sediment of diameter D = 0.20 mm = 6.5610-4 ft.   Use Ss = 2.65 as 
the specific gravity of the sediments, and  = 1.21710-5 ft2/s for the viscosity of water. 
 
The bed shear stress and the shear velocity are calculated as follows: 
 

A = bdo = 10 ft  0.5 ft = 5 ft2 
P = b + 2do = 10 ft + 20.5 ft = 11 ft 

 
Rh = A/P = 5 ft2/11 ft = 0.4545 ft 

 
o = RhSo = 62.4 lb/ft30.4545 ft0.005 = 0.1418 lb/ft2 

 

v* = sftftsftSgR
SRg

oh
oho /2705.0005.04545.0/2.32 2 







 

 
The parameters of the Shield’s diagram are calculated as follows: 
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The point (14.6, 2.1) in the Shield’s diagram is well above Shield’s curve; therefore, 
sediment motion will occur for the flow specified above. Normally, sediment motion is 
assured if the shear stress parameter is a factor of “2” above the curve. And likewise if 
the shear stress parameter is less than half of the curve value, then sediment motion will 
not occur. 
________________________________________________________________________ 
 
More recent work indicates that Shield’s diagram does not account for the absence of 
stream bed forms, the sporadic entrainment of sediment particles at low shear stress, or 
the effects of non-uniform bed material. See NEH 654.0804(b) to calculate a refined 
allowable shear stress parameter. 
 
Grass linings have been widely used to protect the erodible soil boundaries of waterways, 
floodways, and reservoir auxiliary spillways.  An effective stress design approach is 
provided in the basic reference USDA AH 667. Waterway Design Tool software has been 
developed to design grassed waterways, following the procedures of AH 667. Refer to 
EFH, 650, Chapter 7, Grassed Waterways, for example designs of trapezoidal and 
parabolic-shaped grassed waterways, using an extensive set of design tables.  Also, refer 
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to NEH 654.0806 for more information and an example problem on the threshold design 
of a grass-lined channel. 

0325.3 Suspended Sediment Load 

Once sediment particles are moving, the finest particles may be entrained in the flow and 
kept in suspension by turbulent motions while being carried downstream by the bulk 
flow.  The sediment thus transported is known as the suspended sediment load.    
 
The concentration C(y) of suspended sediment, in units of sediment mass per unit liquid 
mass, can be calculated using the following equation: 
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                                         [Eq.  118] 

 
Where y is the distance from the channel bed, Ca is the concentration measured at a 
reference level y = a close to the channel bed, d is the flow depth, and z is a parameter 
calculated as:  

*
v

w
z





                                               [Eq.  119] 

 
In this parameter, w is the settling velocity of the sediment particles,  is the ratio of the 
sediment transport coefficient to the turbulent kinematic viscosity in the flow, is von 
Karman’s constant (related to the viscous stress model commonly used in open channel 
flow), and v*  is the shear velocity.  The value of  is close to 1.0 for fine sediments and 
decreases as the particle size increases.  Von Karman’s constant has been measured to be 
k = 0.40 in clear water, and lower for sediment-laden water.   
 
 
If we measure the concentration at the midpoint of the depth, i.e., Cmd = C(d/2), equation 
118 can be written as follows (a = d/2): 
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                                            [Eq.  120] 

 
The suspended sediment discharge Gss (mass per unit volume) in a rectangular channel of 
width b, can be calculated by integrating the product C(y)v(y) over the depth of flow, 
with v(y) being the flow velocity distribution in the vertical: 
 

 
AAss dybyvyCdAyvyCG )()()()(                    [Eq.  121] 

 
A typical velocity distribution in turbulent open channel flow is the logarithmic 
distribution given by: 
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where V is the mean flow velocity.   The point near the channel bed where the velocity 
becomes zero is located at a distance yo from the channel bed.  The value of yo can be 
found from the above equation by making v(yo) = 0, resulting in:  
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This value becomes the lower limit for the integral of equation 121, the upper limit being 
the depth of flow d.   The suspended sediment discharge per unit width can be calculated 
as: 
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A dimensionless unit sediment discharge can be obtained by dividing gss by the product 
qCmd, where q = Vd is the unit water discharge (or discharge per unit width).   This 
dimensionless unit sediment discharge can be written as: 
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Where o = yo/d, and the integrals I1(z,o) and I2(z,o), are calculated as: 
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and 
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________________________________________________________________________ 
 
Example 47 – Suspended sediment discharge calculation 
Consider a rectangular stream of width b = 20 ft, laid on a slope So = 0.00025, with 
Manning’s n = 0.025, flows at a normal depth do = d = 5.0  ft.  The mid-depth 
concentration is measured to be Cmd = 0.05 gm/lt =0.00312 lb/ft3.  The settling velocity 
of the particles has been calculated to be w = 0.12 ft/s.  Calculate the suspended sediment 
discharge Gss, assuming that the parameter  = 0.88. 
 
Proceeding to calculate the mean velocity and shear velocity: 
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A = bdo = 20 ft  5 ft = 100 ft2 

 
P = b + 2do = 20 ft + 25 ft = 30 ft 

 
Rh = A/P = 100 ft2/30 ft = 3.33  ft 

 

   00025.033.3
025.0

486.1 3/23/2
oh

u SR
n

C
V 2.097 ft/s 

 

v* = sftftsftSgR
SRg

oh
oho /1638.000025.033.3/2.32 2 







 

 
The lower limit in the integral of equation 121 is calculated with  = 0.40 as: 
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while the lower limit of the integrals in equations 126 and 127 is: 
 

o = yo/d = 0.0109ft/5ft = 0.00219 
 
The parameter z from equation 119 is calculated with  = 0.40 as follows: 
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The integrals in equations 126 and 127 can be calculated by using numerical integration 
in a spreadsheet, which calculates the integrals, I1 = 677.1623 and I2 = -3553.72.   
 
The dimensionless unit suspended sediment discharge is calculated with equation 125: 
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The unit suspended sediment discharge is: 
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The suspended sediment discharge is: 

                                          slbgG ssss /58.7520 
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0325.4 Bed Sediment Load 

Coarser sediment particles carried by a stream may move by rolling and saltation along 
the bed of the channel constituting what is known as bed sediment load.   Refer to NEH 
654, Chapter 9, for bed sediment load formulae and where to apply. Using the Meyer-
Peter-Muller formula due to its simplicity: 
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In this formula, gB is the bed sediment discharge (mass per unit time) per unit width of a 
rectangular channel,  is the specific weight of water, g is the acceleration of gravity, D = 
D50 is the sediment particle diameter, Ss is the specific gravity of sediments (e.g., Ss = 
2.65 for sand), Rh is the hydraulic radius (which can be taken as Rh = d, the depth of 
flow, for a wide channel), and So is the bed slope.  The coefficients k and k’ are Stickler 
coefficients defined by the following equations: 
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The first expression for V is Manning’s equation with the coefficient k accounting for the 
overall channel resistance, namely, bed form resistance (e.g., dunes, bars) and grain 
friction resistance. This velocity is defined in terms of the bed slope So.    The second 
expression for V is Manning’s equation with the coefficient k’ accounting only for the 
grain friction resistance.  This equation uses a slope S’ that corresponds to the grain 
friction resistance.  Thus, S’ can be defined as a grain-friction energy slope. 
 
The ratio k/k’, that appears in the Meyer-Peter-Muller equation, can take values between 
0.5 and 1.0, with k/k’ = 1.0 when no bed forms are present, and k/k’ = 0.5 when strong 
bed forms are present.  The coefficient k’ can be calculated, using metric units, as: 
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where D90 is the diameter of bed sediments for which 90% of the material is finer.  In the 
English system of units the equation to use is: 
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________________________________________________________________________ 
Example 48 – Bed sediment load rate calculation 
A rectangular stream of width b = 10 ft, laid on a slope So = 0.00025, with Manning’s n 
= 0.025, flows at a normal depth do = d = 1.5 ft.  The sediment particles specific gravity 
is Ss = 2.65, and the diameters D50 = D = 0.20 mm = 0.2010 -3 m = 6.5610 -4

 ft, and 
D90 = 0.28 mm = 0.2810 -3 m.  Determine the bed sediment load rate (lb/s) for this 
stream. 
 
The calculations proceed as follows: 
 

A = bdo = 10 ft  1.5 ft = 15 ft2 

 
P = b + 2do = 10 ft + 21.5 ft = 13 ft 

 
Rh = A/P = 15 ft2/13 ft = 1.15  ft 
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k/k’ = 0.5847. 
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with ( note that K1 and K2 are used only to aid computation) 
 

sftlbftsftftlbK //07644.0
65.1

65.2
)1056.6(/2.32/4.628 3423

1 





   

 

    0407.0165.2047.05847.0
1056.6

00025.015.1
2/3

2/3

42 












  ft

ft
K  

 
gB = K1K2 = 0.07644 lb/ft/s  0.0407 = 0.0031 lb/ft/s 

 
For the width b = 10 ft, the bed sediment load rate is: 
 

GB = gBb = 0.0031 lb/ft/s  10 ft = 0.031 lb/s 
________________________________________________________________________ 
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0325.5 Scour and Deposition in Channels 

A channel in equilibrium, from the point of view of sediment transport, is one which is 
not degrading (losing bed material) nor aggrading (gaining bed material).  A decrease in 
the sediment supply to the channel may cause degradation.  For example, if a dam has 
been built in a stream that typically carries sediment, the water downstream from the dam 
may contain much less sediment than before and, most likely, would pick up local 
materials to make up for the loss.  On the other hand, an increase in the sediment supply 
to a channel may cause aggradation as the channel may not be able to carry the additional 
supply. Refer to NEH 654, Chapter 13, for additional information on local scour 
calculations. 
 
Consider a degrading channel, of infinite length, as consequence of the building of a dam.  
This situation is depicted in the following figure. 
 

 
Figure 49.  Channel bed degradation downstream of a dam due to reduction in sediment supply. 
 
Let So be the slope of the original bed position and S  be the slope of the final bed 
position.  The solution that describes the change in  the bed elevation with respect to time 
t and space x, measured from the dam foot, is given by (see Raudkivi, 1976): 
 





























 

Kt

x
erfcx

Kt

xtK
SStxz o

24
exp2)(),(

2


         [Eq.  133] 

 
Where K is a parameter defined in terms of an equation of flow (the Chezy equation) and 
the sediment discharge expression (equation 136), and erfc is the complementary error 
function defined as: 
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and erf is the error function. 
 
The Chezy equation for the flow:  
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fSdCV                                                [Eq.  135] 

 
Where C is the Chezy coefficient, d is the flow depth (the equation is given for a wide 
channel), and Sf  is the energy slope (slope of the energy line).    
 
The sediment discharge expression is given in terms of the flow velocity V as an 
empirical equation: 

gs = aVb                                                   [Eq.  136] 
 
where gs is the unit sediment discharge (sediment discharge per unit width), and a and b 
are constant values.   The parameter K in equation 133 is calculated as: 
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where q = Vd is the water discharge per unit width,  is the porosity of the bed sediments 
(typical value,  = 0.40), gs, a, and b are defined in equation 136, and C is the Chezy 
coefficient (see equation 135).   Porosity of soils or sediments is defined as the ratio of 
the volume of voids in the material to the total volume (solids + voids). 
 
Defining the amount of degradation about the dam as: 
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With this definition, equation 133 can be written to give a dimensionless bed elevation: 
 




















Kt

x
erfc

Kt

x

Kt

x

z

z

o 224
exp

2 
                        [Eq.  139] 

 
Defining the initial and final sediment supply as:  
 

gso = K (1-) So                                          [Eq.  140] 
and 

gs = K (1-) S                                         [Eq.  141] 
 
The parameter zo can be written as: 
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Notice that the solution provided by equation 133, applies equally to degradation 
(gso>gs) or aggradation (gso<gs). 
________________________________________________________________________ 
Example 49 – Bed aggradation  
A laboratory flume is set at a slope So = 0.00356 and water flows at a uniform depth do = 
2 inches = 0.167 ft, and a velocity V = 1.31 ft/s.  Sediment is supplied into the flow at a 
rate gso = 1.59810-4 ft2/s until the channel reaches equilibrium.  The estimated value of 
the parameter K is K = 0.0748 ft2/s, and the porosity of sediments is = 0.40.  Without 
changing any of the flow conditions, the sediment supply rate is increased to gs  = 
7.9910-4 ft2/s, so that the channel bed starts aggrading.  (a) Compute the maximum 
amount of aggradation after t = 1 hr = 3600 s, and (b) compute the amount of 
aggradation at a point x = 2.0 ft downstream of the point of sediment injection, after t = 1 
hr = 3600 s.  Assume that the channel is of infinite length. 
 
The maximum amount of aggradation at any given time occurs at position x = 0, and is 
given by equation 142: 
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To find the aggradation elevation for x = 2 ft and t = 3600 hr, use equation 139: 




























Kt

x
erfc

Kt

x

Kt

x
zz o

224
exp

2 
 

 
The value of the function erfc may be found by use of an appropriate spreadsheet. The 
argument of the function for this example is:  
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The spreadsheet gives erfc(0.0609) = 0.931367.   
 
The required aggradation elevation is: 
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z = 0.2362 ft = 2.83 in 

________________________________________________________________________ 
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Example 50 – Bed degradation downstream of dam. 
The initial slope of a river channel is So = 0.0094.   It is estimated that, after construction 
of a dam, the resulting slope will be S = 0.0020.  The parameter K is estimated to be 
10750 ft2/day.   The initial bed elevation at the dam site is zs = 1500 ft above mean sea 
level.  Compute the expected bed elevation at a number of points along the stream 
channel after, (a) two months (60 days), and (b) 2 years (730 days) of the construction of 
the dam. 
 
The elevation at the dam site for t = 60 days, is calculated as: 
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And for t = 730 days, the elevation zo is calculated as: 
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In the following table and plot, the degradation elevations z for t = 0, t = 60 day, and t = 
730 day, for a number of values of “x” are presented.  The bed elevation is calculated as 
follows: 

Bed elevation(x) = Bed elevation(x=0) + z(x) - Sox 
 
The calculations and plot of the data were performed with an appropriate spreadsheet.  
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________________________________________________________________________ 
 
In some instances, a control on the downstream end of a channel of length L may exist 
such that the bed elevation at the downstream end remains constant even as the channel 
aggrades or degrades.  If the starting bed slope is So and the ending bed slope is S, the 
elevation of the channel bed z(x,t) is given by the following equation (see Raudkivi, 
1976): 
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 [Eq. 143] 

 
The coefficient K is calculated as in equation 137.  
 
________________________________________________________________________ 
Example 51 – Bed degradation with constant downstream elevation 

This example uses the same data as in the previous example, i.e., So = 0.0094, S = 
0.0020, and K = 10750 ft2/day; however, a control of constant elevation occurs at the 
downstream end of a channel length L = 1.5 mi = 7920 ft.  The initial bed elevation at the 
dam site is zs = 1500 ft.  Compute the expected bed elevation at a number of points along 
the river channel after, (a) two months (60 days), (b) 2 years (730 days), and (c) 10 years 
(3650 days) of the construction of the dam. (Note: the value of S  can be estimated from 
the terrain geometry and selected so as to produce a channel with a mild slope.) 
 
The calculations and plot of the data, shown below, were performed with an appropriate 
spreadsheet.  
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0330 Pipe Flow 
The principles of pipe flow apply to the hydraulics of such structures as culverts, drop 
inlets, siphons, and various types of pipelines. 
 
Consider Figure 24 which shows the hydraulic grade line, energy line and the energy 
heads at two points of the flow.  Most pipe flow occurs through constant-diameter pipe, 
thus, making the velocity heads at sections (1) and (2) the same (V1 = V2 = V).  This in 
turn means that the energy line (E.L.) and hydraulic grade line (H.G.L.) are parallel.  The 
energy equation for constant-diameter pipe is written as: 
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Where hf represents the energy head losses between sections (1) and (2) in Figure 24.  
Because the energy head losses are due to the friction between the moving fluid mass and 
the walls of the pipe, hf is also referred to as the friction losses.   Friction losses may be 
calculated by measuring the piezometric heads,  


1

11

p
zh  , and 


2

22

p
zh  , and taking the difference hf = h1-h2. 

 
The energy slope, or slope of the energy line, is the ratio of the friction losses, hf, to the 
length of the pipe, L, and may be expressed as:  
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Flow in pipelines occurs in two different regimes, laminar and turbulent.  Laminar flow 
occurs at relatively small velocities, and is characterized by fluid particles moving in 
stable flow layers and with a parabolic velocity distribution.  Increasing the flow velocity 
sufficiently causes instabilities of the flow layers which, in turn, cause the flow to 
become turbulent.  In turbulent flow the fluid particles no longer move in stable layers, 
but rather clump together to form different-sized eddies.  Turbulent flow is characterized 
by a more uniform velocity distribution across the pipe typically described 
mathematically by logarithmic or power-law functions.    
 
 
0331 Friction Loss Methods 
Calculation of friction losses is an important step in analyzing flow in pipes, and in the 
selection of pipe sizes for specific applications.  The calculation of friction losses in pipe 
can be performed through the use of a number of methods such as Manning’s equation, 
the Darcy-Weisbach equation, or the Hazen-Williams formula.  These methods are 
presented in detail next. 
 

0331.1 Manning’s Equation for Pipelines 

Manning’s equation for open-channel flow was presented as equation 71 in terms of the 
flow velocity V, the hydraulic radius R, the channel bed slope So, the Manning’s resistance 
coefficient n, and a constant Cu that depends on the system of units used (Cu = 1.0 for the 
International System, and Cu = 1.486 for the English System).  When applied to pipelines, 
the bed slope So is replaced by the energy slope Sf = hf /L, while the hydraulic radius is 
calculated in terms of the area, A (equation 29 repeated here), and wetted perimeter, P, of 
a full circular cross-section of diameter D, using: 
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DP                                                                  [Eq.  146] 

 
which results in:  
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4

D

P

A
R                                                       [Eq.  147] 

 
With these substitutions, the Manning’s equation for a pipeline results in: 
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Typically, the equation is rewritten by isolating hf: 
 

2
3/4

2

2

3/44
V

D

Ln

C
h

u
f 


                                           [Eq.  149] 

 
Equations based on the above equation (velocity) for both the International System (S.I.) 
and English System (E.S.) follow: 
 
 International System (S.I.): hf(m), Cu = 1.0, L(m), D(m), V(m/s) 
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 English System (E.S.): hf(ft), Cu = 1.486, L(ft), D(ft), V(ft/s, fps) 
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Sometimes it is preferred to work with the discharge Q, instead of the flow velocity V.  
For circular pipelines of diameter D, the equation of continuity is written as either 
equation 30 or equation 31, which are reproduced below: 
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Substituting equation 31 into equation148, and solving for Q: 
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Or, solving for hf:  
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Equations based on the above equation (discharge) for both the International System 
(S.I.) and  English System (E.S.) follow: 
 
 International System (S.I.): hf(m), Cu = 1.0, L(m), D(m), Q(m3/s) 
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 English System (E.S.): hf(ft), Cu = 1.486, L(ft), D(ft), Q(ft3/s, cfs) 
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________________________________________________________________________ 
Example 52 – Pipeline discharge calculation using Manning’s equation 
Determine the discharge Q that can be conveyed by a 3.0-in-diameter corrugated-plastic 
pipeline if a head hf = 10 ft, is to be dissipated in a length L = 100 ft.   
 
Use equation 152 to calculate the discharge.  The data to use are the following: D = 3.0 in 
= 3.0/12 = 0.25 ft, hf = 10 ft, L = 100 ft, Cu = 1.486, n = 0.015 (from Table 5).  The 
resulting discharge is: 
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________________________________________________________________________ 
 
The software USDA-NRCS Hydraulics Formula provides for the calculation of pipe flow 
using Manning’s equation.  To activate this solution select the Pipe Flow tab, which 
produces the entry form shown in Figure 50.   The formula shown in the entry form is 
equivalent to equation 152, but with the diameter D in inches and with local loss 
coefficients equal to zero (i.e., Ke = 0, Kb = 0).   
________________________________________________________________________ 
Example 53 – Pipeline discharge calculation using the USDA-NRCS Hydraulics Formula software 
Using the Pipe Flow tab in the USDA-NRCS Hydraulics Formula software, with Ke = 0, 
Kb = 0, determine the discharge Q conveyed by a 3-in-diameter corrugated-plastic 
pipeline if a head hf = 10 ft, is to be dissipated in a length L = 100 ft.   These data are the 
same as for the previous example 52. The resulting discharge is 0.2 cfs.  
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Figure 50. Pipe Flow calculations with the USDA-NRCS Hydraulics Formula. 

 
The equation for pipe flow shown in the above figure will be derived after introducing 
the concept of local losses in pipe (see section 0331.6).   
________________________________________________________________________ 
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Manning’s n values, shown in Table 5, for various pipe materials are assembled from 
many hydraulic references, including Brater and King (1996), FHWA (2001), and 
USACOE (2008). 
 

Table 5. Values of Manning’s resistance coefficient for pipe 
 

    Manning's  n   
Pipe material Minimum Design Maximum 
Cast-iron, coated 0.010 0.012 - 0.014 0.014 
Cast-iron, uncoated 0.011 0.013 - 0.015 0.015 
Wrought iron, galvanized 0.013 0.015 - 0.017 0.017 
Wrought iron, black 0.012   0.015 
Steel, riveted and spiral 0.013 0.015 - 0.017 0.017 
Annular corrugated metal(1) 0.021 0.021 - 0.025 0.0255 
Helical corrugated metal(1) 0.013 0.015 - 0.020 0.021 
Wood stave 0.010 0.012 - 0.013 0.014 
Neat cement surface 0.010   0.013 
Concrete 0.010 0.012 - 0.017 0.017 
Vitrified sewer pipe 0.010 0.013 - 0.015 0.017 
Clay, common drainage tile 0.011 0.012 - 0.014 0.017 
Corrugated plastic 0.014 0.015 - 0.016 0.017 
PVC  0.009 -0.011  
Smooth Interior PE  0.009 - 0.015 0.02 
Aluminum  0.01  
Gated Aluminum Pipe  0.013  

               (1) N-values for corrugated metal pipe vary with pipe diameter. See FHWA (2001) or       
USACOE (2008) to select a refined n-value 

________________________________________________________________________ 
Example 54 – Flow velocity in a helical corrugated metal pipe using Manning’s equation 
Determine the flow velocity in a helical corrugated metal pipe (use n = 0.016, from Table 
5), that is 5-in in diameter if it dissipates a head hf =6.5 ft in a length L = 300 ft.    
 
With D = 5 in = 5/12 ft = 0.4167 ft, and Cu = 1.486, equation 148 produces the 
following result: 
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________________________________________________________________________ 
Example 55 – Head loss in a riveted and spiral steel pipe using Manning’s equation 
Determine the head loss in 1500 ft of a riveted and spiral steel pipe (use n = 0.015) with a 
24-in (2-ft) diameter that carries a discharge of 10 cfs. Using equation 155: 
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________________________________________________________________________ 
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Example 56 – Velocity in pipeline draining a reservoir – Manning’s equation 
Consider a reservoir whose free surface is located at an elevation z1 = 60 ft, draining 
through a 0.5-ft-diameter, 100-ft-long, concrete pipe (n = 0.012) open to the atmosphere 
whose outlet is located at an elevation z2 = 55 ft.  Determine the velocity in the pipeline.  
The system is depicted in the following figure.  Entrance losses will be ignored. 
 

 
 
Point 1 in the energy equation is at the reservoir free surface where p1 = 0 and V1 = 0.   
Point 2 is at the pipe outlet where p2 = 0 and V2 = V, the pipe velocity.   The energy 
head, H = z1 – z2 = 60 ft – 55 ft = 5 ft, for this case.  Applying the energy equation 
(equation 47) between points 1 and 2: 
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Using Manning’s equation to represent friction losses: 
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This simplifies to: 
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Solving for the velocity, V, and using H = 5 ft, L = 100 ft, n = 0.012, D = 0.5 ft, g = 32.2 
ft/s2:  
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________________________________________________________________________ 
 
 
 
0331.2 Darcy-Weisbach Equation and Friction Factor 
A second method for calculating friction losses in pipes is the Darcy-Weisbach equation 
written, in terms of the flow velocity V as: 

 120



EFH Chapter 3 Hydraulics                                                                           August 2009             

 

g

V

D

L
fh f 2

2

                                                        [Eq.  156] 

 
The friction factor, f, is a function of a relative roughness, e/D, where e is known as the 
absolute roughness or equivalent sand roughness, and of the Reynolds number of the 
flow.   
 
The Reynolds number, defined in equation 10, is repeated here:  
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where  is the density (mass per unit volume) of water,  is the absolute or dynamic 
viscosity of water, and  is the kinematic viscosity of water, defined by equation 9,  = 
/.  Values of the density and viscosity of water related to temperature are available in 
Exhibit 4.   
 
The absolute roughness of a pipe material is the average height of the irregularities of the 
inner wall of the pipe.  The first experiments on head losses in pipes were conducted in 
the early 20th century by coating glass pipes with uniform-size sand grains.  The diameter 
of the sand grains was used to represent the absolute roughness of the pipe, e.  Typical 
values of the absolute roughness of various pipe materials are presented in Table 6. 
Absolute roughness values may be found in Streeter and Wylie (1998) and other similar 
fluid mechanics texts. 
 
 
 

Table 6. Absolute roughness values for pipe materials 
 

Pipe material e (mm) e (ft) 
Smooth surface (glass, plastic) 0 0 
Drawn tubing, brass, lead, copper 0.0015 0.000005 
Centrifugally spun cement 0.0015 0.000005 
Bituminous lining 0.0015 0.000005 
PVC pipe 0.002 0.0000066 
Commercial steel 0.046 0.00015 
Wrought iron 0.046 0.00015 
Welded-steel pipe 0.046 0.00015 
Asphalt-dipped cast iron 0.12 0.0004 
Aluminum, with couplers 0.13 0.00043 
Galvanized iron 0.15 0.0005 
Cast iron 0.25 0.00085 
Wood stave 0.18-0.9 0.0006-0.003 
Concrete 0.3-3 0.001-0.01 
Riveted steel 0.9-9 0.003-0.03 
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The Darcy-Weisbach friction factor has different expressions for laminar or turbulent 
pipe flow, described in the following section. 
 

0331.3 Laminar and Turbulent Friction Factor Equations 

Water flowing at a very low velocity, or in a very small-diameter pipe, typically flows in 
a laminar flow regime.  In laminar flow the flow takes place in layers (Latin, laminae) 
that remain very stable and are easily identifiable by dye injected into the flow.   As the 
velocity increases, conditions are reached in which the flow becomes turbulent.  In 
turbulent flow, layers of flow are no longer identifiable and the flow tends to break down 
into eddies that facilitate mixing.  Laminar flow is rare, occurring at low flow velocity or 
small pipe diameter.  Most pipe flows of interest are turbulent. 
 
Experiments to determine the laminar or turbulent nature of flow were carried out by 
Osborne Reynolds in the 19th century.  Reynolds identified a dimensionless parameter, 
now known as the Reynolds number (equation 10), to determine if a flow is laminar or 
turbulent.  There is also a transitional flow regime in which the flow is neither laminar 
nor turbulent but shifts between conditions.  The typical values for classifying flows 
according to laminar, transitional, or turbulent regimes are shown next: 
 

 Laminar flow:                                       Re<2000 
 Transitional flow:                     2000 < Re < 4000 
 Turbulent flow:                                     Re > 4000 

 
The range Re < 4000 that encompasses laminar and transitional flow is a small range 
considering that Re can take values to 109 or larger.   Thus, turbulent flow is more likely 
to occur in pipelines. 
 
________________________________________________________________________ 
Example 57 – Reynolds number used to classify pipe flow 
Water is flowing in a 2-in diameter pipe at a rate of 0.08 cfs.  If the water temperature is 
70oF, determine the Reynolds number of the flow and classify it as laminar, transitional, 
or turbulent. 
 
The data given is D = 2 in = 2/12 ft = 0.167 ft, Q = 0.08 cfs, and from Exhibit 4 at a 
temperature of 70oF the kinematic viscosity of water is  =.00001059 ft2/s = 1.05910 -5 
ft2/s.    The flow velocity is calculated as:  
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And the Reynolds number is:  
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Since Re > 4000, the flow is turbulent. 
________________________________________________________________________ 
 
In the laminar regime, the Darcy-Weisbach friction factor, f, is a function of the Reynolds 
number, given as: 
 

Re

64
f                                                         [Eq.  157] 

 
In the turbulent regime, an equation relating the friction factor, f, the Reynolds number 
Re, and the relative roughness, e/D, is the Colebrook-White equation: 
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The difficulty in using this equation is that it is not explicit in f and any solution 
involving this equation requires a numerical approach.   To facilitate solving explicitly 
for f, a close approximation (2 – 5% error) to the Colebrook-White equation is provided 
by the Swamee-Jain equation: 
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In the following section, solutions of turbulent pipe flow using the Darcy-Weisbach 
equation are presented. 
 
 

0331.4 Pipe Flow Solutions Using the Darcy-Weisbach Equation 

Since the discharge, Q, is often known or to be calculated, it is convenient to write the 
Darcy-Weisbach equation in terms of the discharge as follows: 

52
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                                            [Eq.  160] 

 
The Reynolds number Re can also be written in terms of the discharge Q as follows: 
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With this definition of the Reynolds number, the Swamee-Jain equation becomes: 
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Combining the Darcy-Weisbach equation (equation 160) with the Swamee-Jain equation 
(equation 162), and solving for the discharge, Q, produces the following equation: 
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This equation’s variables are best solved for, by using a numerical spreadsheet 
application.  Typically, there are three types of problems involving pipe friction losses, 
namely: 
 

1. Head loss problem: calculate hf given D, Q or V, and g, L, e, . 
2. Discharge problem: calculate Q or V, given D, hf and g, L, e, . 
3. Sizing problem: calculate D, given Q, hf and g, L, e, . 

 
Where hf is the friction loss, 
           D is the pipe diameter, 
           Q is the discharge, 
           V is the velocity, 
           g is the acceleration of gravity, 
           L is the pipe length, 
           e is the absolute roughness, 
           and, v is the kinematic viscosity.   
 
 
________________________________________________________________________ 
Example 58 – Pipe flow solutions with the Darcy-Weisbach equation 
 
Problem type 1. Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s2, L = 1000 ft, e = 0.002 in = 
0.000166 ft, and  = 1.13x10-5 ft2/s, find hf.  A numerical spreadsheet application of 
equation 163 gives hf = 8.86 ft.  Alternately, equation 163 can be solved directly for hf, 
with a hand calculator. 
 
Problem type 2. Given D = 0.7 ft, hf = 15 ft, g = 32.2 ft/s2, L = 750 ft, e = 0.005 in = 
0.000416 ft, and  = 1.2x10-5 ft2/s, find Q.  A numerical spreadsheet application of 
equation 163 gives Q = 2.68 cfs.  Alternately, equation 163 can be solved iteratively for Q, 
with a hand calculator, as shown in the following table: 
 

Trial Q Calculated Q 
1.5 2.63 
2.1 2.66 
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2.6 2.681 
2.7 2.684 
2.68 2.683 

 
Problem type 3. Given Q = 3 cfs, hf = 10 ft, g = 32.2 ft/s2, L = 1500 ft, e = 0.01 in = 
0.000833 ft, and  = 1.5x10-5 ft2/s, find D.  A numerical spreadsheet application of 
equation 163 gives D = 0.8591 ft  12 in = 10.29 in.  The recommended pipe diameter is 
10.5 in. 
________________________________________________________________________ 
Example 59 – Flow in pipeline draining a reservoir – the Darcy-Weisbach equation  
Consider again (see example 56) a reservoir whose free surface is located at an elevation 
z1 = 60 ft, draining through a 0.5-ft-diameter, 100-ft-long, concrete pipe (e = 0.003 ft) 
open to the atmosphere whose outlet is located at an elevation z2 = 55 ft.  The system, 
which carries water at a temperature of 55oF, is depicted in the following figure.  Minor 
losses at the entrance from the reservoir into the pipe are ignored.  Determine the 
discharge and velocity in the pipeline. 
 

 
 

 
 
 
As in example 56, the energy equation (equation 47) is applied, but the friction losses are 
estimated with the Darcy-Weisbach equation instead of Manning’s equation.  The energy 
equation, in terms of discharge, Q, simplifies to: 
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In this equation, the friction factor, f, may be closely approximated by the Swamee-Jain 
equation (equation 159).  Using H = 5 ft, L = 100 ft, e = 0.003 ft,  = 1.3135 10 -5 ft2/s, 
D = 0.5 ft, g = 32.2 ft/s2, and applying a numerical spreadsheet solution gives Q =1.285 
cfs. 
 
And the flow velocity is: 
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0331.5 Pipe Flow Solutions Using Hazen-Williams Formula 
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A third method for calculating friction head losses in pipes is the Hazen-Williams 
formula.  The Hazen-Williams formula was developed from empirical data of water flow 
in pipes.  In terms of flow velocity, V, the Hazen-William formula is expressed as 
follows: 
 
 International System (S.I.): V(m/s) 
 

54.063.0849.0 fHW SRCV                                           [Eq.  164] 

 
 English System (E.S.): V(ft/s, fps) 

 
54.063.0318.1 fHW SRCV                                            [Eq.  165] 

  
where V is velocity, CHW  is the Hazen-Williams coefficient, R is the hydraulic radius 
(R=D/4), and Sf is the energy slope (Sf=hf/L).  Using the definitions of R and Sf, the 
Hazen-Williams formula may be written as: 
 
 International System (S.I.): hf(m), L(m), D(m), V(m/s) 
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 English System (E.S.): hf(ft), L(ft), D(ft), V(ft/s, fps) 
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In terms of the discharge, the Hazen-Williams formula is written as: 
 
 International System (S.I.): hf(m), L(m), D(m), Q(m3/s) 
 

54.0

63.2278.0 









L

h
DCQ f

HW                           [Eq.  168] 

 
 English System (E.S.): hf(ft), L(ft), D(ft), Q(cfs) 
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Solving for the head loss, hf, in the Q-based equations: 
 
 International System (S.I.): hf(m), L(m), D(m), Q(m3/s) 
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 English System (E.S.): hf(ft), L(ft), D(ft), Q(cfs) 
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Solving for the diameter, D, in the Q-based equations: 
 
 International System (S.I.): hf(m), L(m), D(m), Q(m3/s) 
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 English System (E.S.): hf(ft), L(ft), D(ft), Q(cfs) 
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Table 7, below, shows typical values for the Hazen-Williams coefficient. Hazen-
Williams coefficients may be found in Lamont (1981), Mays (1991) and other similar 
publications. 
 

 
Table 7. Values of the Hazen-Williams coefficient. 

 

Pipe description  Condition CHW 

Very smooth Straight alignment 140 

  Slight curvature 130 

Cast iron, uncoated New 130 

or steel pipe 5 years old 120 

 10 years old 110 

 15 years old 100 

 20 years old 90 

  30 years old 80 
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Cast iron, coated All ages 130 

Wrought iron or Diameter 12 in. and up 110 

standard galvanized steel Diameter 4 to 12 in. 100 

  Diameter 4 in or less 80 

Brass or lead New 140 

Concrete Very smooth, excellent joints 140 

 Smooth, good joints  120 

  Rough 110 

Vitrified clays   110 

Smooth wooden;  wood stave   120 

Asbestos cement   140 

Corrugated metal   60 

Pipes of small diameter old, rough inside surface, as low as 40 

PVC    150 

Smooth interior PE    150 

Aluminum    120 

Aluminum gated pipe    110 
 
 
Solutions to pipe-flow problems with the Hazen-Williams formula require the use of 
equations (equation 164) through (equation 173), depending on the data given and the 
required variable to be solved for.  Some examples are shown next. 
________________________________________________________________________ 
Example 60 – Pipe velocity calculation using the Hazen-Williams formula 
A pipe line with a length L = 1200 ft, diameter D = 0.75 ft, suffers a head loss hf = 12 ft.  
If the pipe is made of 5-year old steel pipe (CHW = 120), determine the pipe velocity. 
Using equation 167 as follows: 
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________________________________________________________________________ 
 
 
 
 
Example 61 – Pipe discharge calculation using the Hazen-Williams formula 
Determine the discharge Q for a rough concrete pipeline (CHW = 110) with a diameter D 
= 1.5 ft, that produces a head loss hf = 8.5 ft on a length of L = 650 ft.   
Using equation 169 as follows: 
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________________________________________________________________________ 
Example 62 – Head loss calculation using the Hazen-Williams formula 
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Determine the head loss hf in a new brass pipeline (CHW = 140) of length L = 2000 ft and 
diameter D = 3.0 ft, that carries a discharge Q = 20 cfs. 
Using equation 171 as follows: 
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________________________________________________________________________ 
Example 63 – Diameter calculation using the Hazen-Williams formula 
Determine the diameter of coated cast iron (CHW = 130) pipe that produces a friction 
head loss hf = 20 ft in a length L = 500 ft while carrying a discharge Q = 25 cfs.   
Using equation 173 as follows: 
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The most likely value of commercial pipeline that can be used is D = 1.5 ft. 
________________________________________________________________________ 
Example 64 – Flow in pipeline draining a reservoir – Hazen-Williams formula 
Consider once more (see examples 56 and 59) the case of a reservoir whose free surface 
is located at an elevation z1 = 60 ft, draining through a 0.5-ft-diameter, 100-ft-long, rough 
concrete pipe (CHW = 110) open to the atmosphere whose outlet is located at an elevation 
z2 = 55 ft.  The system is depicted in the following figure.  Local losses at the entrance 
from the reservoir into the pipe are ignored.  Determine the discharge and velocity in the 
pipeline. 
 

 
 
As in examples 56 and 59, the energy equation (equation 47) is applied, but the friction 
losses are estimated with the Hazen-Williams formula.  The energy equation, in terms of 
discharge, Q, simplifies to: 
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Using H = 5 ft, L = 100 ft, CHW = 110, D = 0.5 ft, g = 32.2 ft/s2, and applying a 
numerical spreadsheet solution gives Q = 1.385 cfs, and the flow velocity is:  
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________________________________________________________________________ 
 

The same concrete pipe material, diameter, length, and elevations were used in examples 
56, 59, and 64.  These examples illustrate the use of Manning’s equation, the Darcy-
Weisbach equation (using Swamee-Jain equation for the friction factor), and the Hazen-
Williams formula in estimating friction loss in pipe.  The values of the flow velocity 
found using these three methods are listed below. 
 

 Manning’s equation:                                      V = 6.46  fps 
 Darcy-Weisbach (with Swamee-Jain):          V = 6.54 fps 
 Hazen-Williams formula:                              V = 7.05 fps 

 

0331.6 Local Losses in Pipelines 

Local losses are energy losses due to the presence of appurtenances or changes in the 
pipeline such as valves, elbows, curves, reductions or expansions.  The term local losses 
indicate that these energy losses are concentrated at a location (rather than distributed 
along a pipeline as are friction losses).  Local losses in pipelines are calculated using an 
equation of the form: 
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2 gD
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                                   [Eq.  174] 

 
Where the local loss coefficient K, depends on the nature of the device or pipeline change 
producing the loss.  Note that local losses are sometimes referred to as minor losses. 
 
In addition to losses at appurtenances, local losses occur at pipeline expansions and 
contractions; see section 0332.1.  Also, local losses occur at entrances and discharge ends 
of pipe. 
 
Discharge loss 
Figure 51, below, shows the conditions of flow at the discharge end of a pipeline into a 
reservoir.   

 
Figure 51.  Discharge from a pipe into a reservoir. 

 
At section (1), right before the entrance, the pressure head is p1/ = H, the elevation of 
the pipe centerline can be taken as z1 = 0, and the velocity is V1 = V.  The curved line in 
the reservoir depicts a streamline of flow connecting the pipe outlet to the free surface of 

 130



EFH Chapter 3 Hydraulics                                                                           August 2009             

the reservoir at section (2).  In this section the pressure head is p2/ = 0, the elevation is 
z2 = H, and the local velocity is V2 = 0.  Energy head loss between sections (1) and (2) is 
a local head loss referred to as a discharge loss, and given by equation 174: 
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Writing the energy equation (equation 47) between points (1) and (2), gives: 
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Replacing the data for sections (1) and (2) as described above, the equation reduces to: 
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From which it follows that the discharge loss coefficient, Kd = 1.0 ( standard value used 
in pipe flow analyses). 
 
 
 
 
Entrance loss 
Three different conditions of entrance from a reservoir into a pipe, and their local loss 
coefficients, are depicted below. 
 
 

 
 

Figure 52. Entrance loss coefficients for typical pipe entrance shapes 
 
 
 
The Pipe Flow tab in the USDA-NRCS Hydraulics Formula software provides additional 
values for the entrance coefficient Ke for other specific entrance conditions.  These values 
are summarized in Table 8, below.  Entrance loss coefficients may also be found in 
FHWA (2001) and USACOE (2008), related to culvert analysis. 
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Entrance losses are calculated using the expression (equation 174): 
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Table 8.  Pipe entrance loss coefficients. 
 

Type of Structure and Entrance Design Ke 
Pipe, Concrete  
   Projecting from fill, socket end [groove-end] 0.2 
   Projecting from fill, square cut end 0.5 
   Headwall or Headwall and wingwalls  
      Socket end of pipe [groove-end] 0.2 
      Square-end 0.5 
   Rounded (radius = 1/12D) 0.2 
   Mitered to conform to fill slope 0.7 
   End section conforming to fill slope 0.5 
Pipe or Pipe-Arch, Corrugated Metal  
   Projecting from fill (no headwall) 0.9 
   Headwall or Headwall and wingwalls square-edge 0.5 
   Mitered to conform to fill slope 0.7 
   End section conforming to fill slope 0.5 

 
 
 
 
 
 
 
________________________________________________________________________ 
Example 65 – Pipe flow calculation including local losses using the USDA-NRCS Hydraulics Formula 
software 
Using the Pipe Flow tab in the USDA-NRCS Hydraulics Formula software, calculate the 
discharge Q and flow velocity V for a 18-in-diameter, 1200-ft-long, corrugated plastic 
pipe (Manning’s n = 0.015) whose entrance is mitered to conform to a fill slope (Ke = 
0.7).  Head on the pipe is 10 ft.   
 
The solution, illustrated in the figure below indicates that Q = 8.1 cfs, and V = 4.6 ft/s.   
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Figure 53. Solution for pipe flow with entrance loss using USDA-NRCS Hydraulics Formula. 
________________________________________________________________________ 
 
 
 
Losses due to pipe fittings 
Pipe fittings such as valves, elbows, and bends produce local losses according to 
(equation 174).  The values of selected pipe fittings are shown in Table 9, below. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 9. Local loss coefficients for selected pipe fittings. 
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For a more complete set of values for local losses, refer to Brater and King (1996) or 
Idelchik (1999).  
 
 
 
________________________________________________________________________ 
Example 66 – Pipe flow between two reservoirs including local losses – Manning’s equation 
 
The figure below shows the steady flow between two reservoirs whose free surfaces have  
an elevation difference, H.  The pipe has length L, diameter D, and resistance coefficient; 
the pipe carries a discharge Q and flows with a velocity, V.   
 

 

Pipe fitting K  
Globe valve, wide open 10 

Alfalfa or stub valves 2.80 

Close-return bend 2.20 

Portable hydrants 1.00 

Valve opening elbows 1.00 

T, through side outlet 1.80 

short-radius elbow 0.90 

medium-radius elbow 0.75 

long-radius elbow 0.60 

45o elbow 0.42 

Gate valve, wide open 0.19 

Gate valve, half open 2.06 

 
Figure 54. Schematic of pipe flow between two reservoirs. 

 
The velocity at the free surfaces (A) and (B) is practically zero, i.e., VA = VB = 0, and the 
gage pressure at those points is also zero, pA = pB = 0.  Finally, the elevations of the free 
surfaces at points (A) and (B) can be taken as zA = H and zB = 0 (i.e., the reference level 
for elevation is free surface (B)).  The energy equation between points (A) and (B), 
including friction and local losses in the pipe, is written as (see equation 51): 
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Introducing Manning’s equation (equation 151) to estimate pipe friction losses, the local 
loss equation (equation 174), and the data presented above, the energy equation is written 
as: 
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In terms of the flow discharge, this equation is written as: 
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The term K includes the sum of all local loss coefficients in the pipeline.  Note that the 
Darcy-Weisbach equation or the Hazen-Williams formula is always an option to use in 
estimating pipe friction loss. 
 
Using the values L = 550 ft, D = 2 ft, n = 0.012, Q = 35 cfs, with the following local loss 
coefficients:  
 

 Entrance:              Ke = 0.04 (bell-mouth entrance) 
 Elbow 1:              Kb1 = 0.90 (short-radius elbow)  
 Elbow 2:              Kb2 = 0.75 (medium-radius elbow) 
 Valve:                  Kv = 0.19  (gate valve, wide open) 
 Discharge:           Kd = 1.00 (standard value for discharge coefficient) 

 
Thus, for this case K = Ke + Kb1 + Kb2 + Kv + Kd = 0.04+0.90+0.75+0.19+1.00 = 
2.88.  Find the difference in elevations between the reservoirs, H.   
 
Using the equation developed above: 
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H =16.77 ft. 
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If the elevation difference between reservoirs is known, the resulting equation above may 
be solved for V to determine the velocity in the pipe.  Then the discharge may be 
determined with the continuity eqution, Q = VA. 
________________________________________________________________________ 
 
Development of the Pipe Flow equation 
The equation from the Pipe Flow tab in the USDA-NRCS Hydraulics Formula software is 
shown Figure 53 and repeated here: 
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In order to develop this equation:  

K = Ke + Kb + 1 
 
with Ke being the entrance loss coefficient, Kb accounting for devices such as elbows and 
valves (referred to as Bend Coefficient in Figure 53), and Kd = 1 being the discharge 
coefficient.  Thus, the energy equation presented in example 66 (Manning’s equation is used to 
estimate pipe friction losses) is written as: 
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Replacing the diameter D (in feet) with d (in inches) and defining:  
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The energy equation becomes: 
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Solving for V, gives the following equation: 
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Multiplying this result by the area of the cross-section and substituting Q for VxA gives 
equation 175. 
________________________________________________________________________ 
Example 67 – Pipe flow calculation including local losses using USDA-NRCS Hydraulics Formula  
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Use the Pipe Flow tab in the USDA-NRCS Hydraulics Formula software to determine the 
discharge in a pipe with L = 550 ft, D = 2 ft, n = 0.012, H = 10 ft, with the following 
local loss coefficients:  
 

 Entrance:              Ke = 0.04 (bell-mouth entrance) 
 Bend coefficient: Kb2 = 0.75 (medium-radius elbow) 
 Discharge:           Kd = 1.00 (standard value for discharge coefficient) 

 
The solution is shown in the following Figure 55.  The results shown are Q = 28.9 cfs 
and V =9.2 fps.  Also, the friction coefficient Kp = 0.0106.   
 

 
Figure 55.  Solution for pipe flow including all local lossess using USDA-NRCS Hydraulics Formula 

________________________________________________________________________ 

0331.7 Pumps in Pipelines 

Pumps are mechanical devices used to introduce energy into a pipeline system.  Pumps 
can be used, for example, to lift water from a lower elevation to a higher one, or to 
overcome friction losses between reservoirs.  The most common types of pumps used in 
pipelines are centrifugal pumps.  In this section the analysis of pipeline systems with 
centrifugal pumps is presented.   
 
A pump introduces an energy head hp into a pipeline system.  The energy equation 
including a pump head is written as: 
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The normal convention is that energy added to the flow, such as the pump head hp, is 
placed on the left-hand side (upstream side) of the equation, while, energy extracted from 
or lost by the flow, such as the friction head hf and the sum of local losses hL, is placed 
on the right-hand side (downstream side) of the equation. 
 

0331.7.1 Pump Operational Characteristics 

In pipeline system hydraulics, an important operational characteristic of a pump is the 
variation of the pump head hp with the discharge Q passing through the pump.  For 
centrifugal pumps the relationship between hp and Q is given by a quadratic equation 
(also called a polynomial equation of the second degree) of the form: 
 

hp = aQ2 + bQ + c                                               [Eq.  177] 
 
The coefficients a, b, and c, in this equation, can be determined by fitting data from tests 
performed on a given pump.  The equation describing a given pump, or at least a graph of 
the relationship between hp and Q, should be available from the pump manufacturer.   
 
________________________________________________________________________ 
Example 68 – Pump head and discharge analysis 
 
Tests on a pump produce the following discharge-head data: 
 

Q(cfs) hp(ft) 
0.0 25.3 
5.0 22.0 
10.0 18.3 
15.0 12.0 
20.0 4.2 

 
 
The pump discharge graph and equation were produced with curve-fitting software and 
are shown in Figure 56 below. 
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Figure 56. Pump discharge-head graph 
 
Notice from the graph that the energy head for zero discharge is hp = 25.143 ft.  This is 
the “shut-off head” or maximum head for this pump.  If valves are closed and no flow 
occurs, the pump is capable of building 25.143 ft of head. 
 
The maximum pump capacity at free discharge is calculated from the pump curve 
equation by setting hp (y) = 0 and solving for Q.  This gives 0 = -0.0331Q2 - 0.3811Q + 
25.143.  The positive solution to this quadratic equation produces the free-discharge,            
Q = 22.4 cfs, which the pump delivers with hp = 0 (no discharge pressure).  This 
discharge is what the pump would deliver if it were disconnected from any pipeline and 
allowed to discharge freely to the atmosphere. 
________________________________________________________________________ 
 
An example of a pump-pipeline system analysis using manufacturer-provided pump 
curves is presented in  
 
Exhibit 6 - Pipe-system analysis . 
 

0331.7.2 Pump Power and Efficiency 

 
The hydraulic power developed by a pump represents the amount of energy per unit time 
introduced by the pump into the flow.   The hydraulic power, Ph, is calculated as: 
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Ph = Qhp                                          [Eq.  178] 

 
where  is the specific weight of water.  Using the units of the English system, namely,  
(lb/ft3), Q (cfs), and hp(ft), the power is given in units of lbft/s.  A more commonly used 
unit of power in the English System is the horsepower (hp) defined as 1 hp = 550 lbft/s.  
Thus, in terms of horsepower the equation for the hydraulic power of a pump is: 

550
p

h

Qh
P


 , Ph(hp)                                           [Eq.  179] 

 
In units of the International System (S.I.), namely, (N/m3), Q (m3/s), and hp(m), the 
pump power Ph is given in Watts (W).  For the S,I, use equation 178 to calculate the 
power. 
 
To provide hydraulic power, Ph, the pump P is activated by a motor M as illustrated in 
Figure 57, below.  The motor can be powered by electricity at connection E. 
 

 
Figure 57. System schematic showing motor M, the electric supply E, and pump P 

 
The motor provides the pump with input power Pm, however, due to energy losses by 
friction in the pump shaft (which is dissipated as heat in the environment), and other 
losses, not all of the motor power Pm is utilized by the pump to produce hydraulic power.  
Thus, in general, Ph < Pm, and the ratio between the hydraulic power and the motor 
power is a quantity smaller than one (Ph/Pm<1) known as the efficiency of the pump, p:  
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The motor itself is provided with a certain amount of electric power Pe; however, due to 
losses in the transmission line as well as in the motor mechanism the motor power Pm is 
smaller than the electric power, i.e., Pm<Pe.  Thus, the efficiency of the motor, m, is a 
quantity smaller than one (Pm/Pe <1), defined as: 
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The combined motor-pump system, in turn, has an efficiency m-p defined as 
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The various efficiencies, i, can be expressed as a percent by multiplying by 100. 
________________________________________________________________________ 
Example 69  - Pump power and efficiency calculation 
A pump produces a head hp = 41.67 ft with a discharge Q = 1.24 cfs.  If the pump 
efficiency is 80% (p = 0.80) and the motor efficiency is 90% (m = 0.90), determine: 
(a) the hydraulic power provided by the pump to the flow, Ph; (b) the power that the 
motor needs to provide to the pump, Pm; (c) the electric power needed to be provided to 
the motor, Pe; and (d) the efficiency of the motor-pump system, m-p. 
 
(a) The hydraulic power (in hp) is calculated according to equation 179: 
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(b) The power provided by the motor follows from the definition of the pump efficiency 
(equation 180): 
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(c) The electric power provided to the motor follows from the definition of the motor 
efficiency (equation 181): 
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(d) The efficiency of the motor-pump system can be calculated with equation 182: 
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________________________________________________________________________ 
0332 Pipelines and Networks 
Pipelines of different diameters can be combined into different configurations including 
pipes in series, pipes in parallel, pipes converging to a single point, and more complex 
pipe networks.  These configurations are discussed in the following sections. 
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0332.1 Pipelines in Series 

Pipelines in series consist of segments of pipeline connected one after the other so that 
the flow discharge follows a single path.  An arrangement of pipelines in series is 
presented in Figure 58, below. 
 

 
 

Figure 58.  Three pipelines in series connecting two reservoirs. 
 
Three pipelines of different diameters and lengths are shown carrying water between 
reservoirs (A) and (B).  The pipelines have lengths L1, L2, and L3, with corresponding 
diameters D1, D2, and D3.  In addition, the pipelines have different roughness 
coefficients.   The elevation difference between reservoirs (A) and (B) is given by H. 
 
Local head losses due to an expansion or a contraction 
The system illustrated in Figure 58 shows an expansion in diameter between pipelines 1 
and 2 (point X), and a contraction in diameter between pipelines 2 and 3 (point C).  
Expansions and contraction in pipelines produce local head losses.   
 
For a sudden expansion, the local head losses are calculated as: 
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The subscripts, u and d refer to the upstream and downstream pipelines.  Notice that the 
head loss in a sudden expansion depends only on the diameters upstream and downstream 
of the expansion (Du, Dd).  Defining expansion loss coefficients as: 
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or 
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The general form of the local losses equation is written as:  
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For a sudden contraction, as the one between pipes 2 and 3 in Figure 58, the local head 
losses are given by the equation: 
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where Kc is the contraction loss coefficient given in Table 10, below, and Vd is the flow 
velocity in the downstream pipeline, i.e., the one with the smallest diameter.  In Table 10, 
Dd and Du are the diameters of the pipe downstream and upstream of the contraction.  
See Brater and King (1996) or Idelchik (1999) for more information on pipeline 
contraction losses.  
 

Table 10. Local head loss coefficients for a sudden pipe contraction. 
 

Dd/Du Kc Dd/Du Kc 
0.1 0.45 0.6 0.28 
0.2 0.42 0.7 0.22 
0.3 0.39 0.8 0.15 
0.4 0.36 0.9 0.06 
0.5 0.33 1.0 0.00 

 
 
Energy equation for the three-pipeline system 
In writing the energy equation between reservoirs (A) and (B) in Figure 58 friction head 
losses in each pipeline will be included, as well as, entrance losses from reservoir (A) 
into pipeline 1, expansion losses at point (X), contraction losses at point (C), and 
discharge losses from pipeline 3 into reservoir (B).  For the points (A) and (B) in the 
surface of the reservoirs, VA = VB = 0, pA = pB = 0, zA = zB + H.  The expressions for 
the local losses are the following: 
 

 Entrance loss from reservoir (A) to pipe 1: 
g

V
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1 , with Ke = 0.5. See 

Figure 52. 
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 Expansion from pipe 1 to pipe 2: 
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 Contraction from pipe 2 to pipe 3: 
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function of the ratio D3/D2. 

 Discharge loss from pipe 3 into reservoir (B): 
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always. 
 
The friction losses in each pipe may be calculated using either the Darcy-Weisbach 
equation, the Manning’s equation, or the Hazen-Williams formula.  The total friction loss 
is the sum of each pipe’s friction loss. 
 
The energy equation for the system of Figure 58 is written as: 
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From which it follows that: 
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In most analyses of pipelines in series the diameters of the pipelines are known, and the 
problem consists in determining the discharge Q for a given available head H, or vice 
versa.  The three examples of pipes in series presented below include the effect of local 
losses. 
________________________________________________________________________ 
Example 70 – Pipes in series using the Darcy-Weisbach equation 
The system of Figure 58 has pipelines lengths, diameters, and roughness values: L1 = 200 
ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, D3 = 1.00 ft, e1 = 0.0001 
ft(concrete), e2 = 0.00004 ft(PVC), and e3 = 0.00025 ft(welded steel).  The kinematic 
viscosity is  = 110 -5 ft2/s.   (a) If the discharge Q = 5 cfs, determine the needed head 
H.  (b) If the available head between the reservoirs is H = 30 ft, determine the 
discharge through the pipes. 
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A spreadsheet application gives the results.  If the discharge is 5 cfs, the needed head is 
coincidentally 5 ft.  If the available head is 30 ft, the discharge, Q = 12.58 cfs. 
________________________________________________________________________ 
 
 
Example 71 - Pipes in series using the Manning’s equation 
Using the same data as example 70, the pipe lengths, diameters, and Manning’s n 
coefficients are given by L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, 
D3 = 1.00 ft, n1 = 0.012(concrete), n2 = 0.01(PVC), and n3 = 0.013(welded steel).  (a) If 
the discharge Q = 5 cfs, determine the needed head H.  (b) If the available head between 
the reservoirs is H = 30 ft, determine the discharge through the pipes. 
 
A spreadsheet application gives the results.  If the discharge is 5 cfs, the needed head is 
8.12 ft.  If the available head is 30 ft, the discharge, Q = 9.61 cfs. 
________________________________________________________________________ 
Example 72 - Pipes in series using the Hazen-Williams formula 
Using the same data as examples 70 and 71, the pipe lengths, diameters, and Hazen-
Williams coefficients are given by L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 
1.50 ft, D3 = 1.00 ft, CHW1 = 120(concrete), CHW 2 = 150(PVC), and CHW 3 = 120(welded 
steel).  (a) If the discharge Q = 5 cfs, determine the needed head H.  (b) If the available 
head between the reservoirs is H = 30 ft, determine the discharge through the pipes. 
 
A spreadsheet application gives the results.  If the discharge is 5 cfs, the needed head is 
6.37 ft.  If the available head is 30 ft, the discharge, Q = 11.39 cfs. 
________________________________________________________________________ 
 
 
Calculations were also made ignoring local losses in examples 70, 71, and 72. Table 11 
shows the effect of neglecting local losses on discharge. 
 

Table 11. Effect of neglecting local losses on an example pipeline system 

Friction loss 
method 

Q (cfs) including 
local losses 

Q (cfs) 
neglecting local 
losses 

Percentage 
difference 

Darcy-Weisbach 12.58 14.79 17.56% 
Manning's 9.61 10.47 8.95% 
Hazen-Williams 11.39 13.03 14.40% 

 
The percentage differences in Table 11 are too large to neglect local loss. A generally 
accepted criterion is that local losses should be included in a pipe design analysis if the 
local losses exceed 5% of the total head loss.  
 

0332.2 Pipelines in Parallel 

Figure 59 illustrates reservoirs connected by three different parallel pipelines conducting 
water between the reservoirs.  An energy equation can be written separately for each of 

 145



EFH Chapter 3 Hydraulics                                                                           August 2009             

the pipelines.   Including entrance (he), discharge (exit) (hd), and friction (hf) losses for 
each pipeline, the corresponding energy equations can be written as: 
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Where the subscripts (1), (2), and (3) refer to each of the pipelines as illustrated in the 
figure below. 
 

 
 

Figure 59. Three pipelines in parallel connecting two reservoirs. 
 

A simplified analysis in which the local losses are neglected simplifies equation 189 to: 
 

321 )()()( fff hhhH                                  [Eq.  190] 

 
A typical problem of parallel pipes consists in determining the total discharge Q 
delivered from the upstream to the downstream reservoir given the available head H 
between the reservoirs.  Given H, the available head, the friction loss, hf, is known. 
Then using either the Darcy-Weisbach equation (requires spreadsheet application for 
efficient calculation), the Manning’s equation, or the Hazen-Williams formula, the 
individual discharges Q1, Q2, and Q3 can be obtained.  The individual discharges are 
summed to obtain the total discharge.  The examples using Manning’s equation and the 
Hazen-Williams formula presented below neglect local losses. 
________________________________________________________________________ 
Example 73 - Pipes in parallel using the Manning’s equation 
The system of Figure 59 has pipelines lengths, diameters, and Manning’s n coefficients: 
L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, D3 = 1.00 ft, n1 = 0.012, 
n2 = 0.018, and n3 = 0.010.  If the available head is H = 30 ft, determine the total 
discharge between the reservoirs. 
 
The head loss through each pipeline is 30 ft.  Manning’s equation (equation 152) is used 
to calculate the individual discharges:   
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The total discharge is Q = 14.95 cfs + 20.78 cfs + 20.71 cfs = 56.44 cfs. 
 
Discharge calculations may also be made for individual pipes with Pipe Flow, NRCS 
Hydraulics Formula program, which uses Manning’s equation for friction losses. The 
discharges calculated will be slightly less than those shown above because Pipe Flow, 
NRCS Hydraulics Formula automatically accounts for a local loss at the pipe exit (Kd = 
1.0). 
________________________________________________________________________ 
Example 74 - Pipes in parallel using the Hazen-Williams formula 
The system of Figure 59 has pipelines lengths, diameters, and Hazen-Williams 
coefficients: L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, D3 = 1.00 ft, 
CHW1 = 100, CHW 2 = 80, and CHW 3 = 120.  If the available head is H = 30 ft, determine 
the total discharge between the reservoirs. 
 
The head loss through each pipeline is 30 ft.  Using (equation 169), the individual pipe 
discharges are calculated as follows: 
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The total discharge is Q = 15.50 cfs + 24.79 cfs + 21.74 cfs = 62.03 cfs. 
________________________________________________________________________ 
 
0332.3 Pipelines Converging at a Single Point 
Figure 60 shows a pipeline system consisting of three pipelines connecting reservoirs A, 
B, and C to a single delivery point J (for Junction), where a total discharge Q is to be 
delivered.  Shown in the figure are also the elevations of the free surface of the reservoirs, 
namely, HA, HB, and HC, as well as the piezometric head elevation of the junction point, 
HJ.   

 147



EFH Chapter 3 Hydraulics                                                                           August 2009             

 

 
 

Figure 60. Three pipelines converging to a single delivery point. 
 
Neglecting local or minor losses, the energy equations for the three pipelines shown 
above are written as: 
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                                [Eq.  191] 

 
Where (hf)1, (hf)2, and (hf)3 are the friction losses in pipelines [1], [2], and [3], 
respectively.   
 
A typical problem for the system illustrated in Figure 60 consists in determining the 
discharge Q given the elevations of the free surfaces in reservoirs A, B, and C (HA, HB, 
HC) and that of point J (HJ).  The individual pipe discharges are summed to obtain the 
total.  The examples using Manning’s equation and the Hazen-Williams formula 
presented below neglect local losses. 
 
________________________________________________________________________ 
Example 75- Converging pipelines using Manning’s equation 
The system of Figure 60 has pipelines lengths, diameters, and Manning’s n coefficients: 
L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, D3 = 1.00 ft, n1 = 0.012, 
n2 = 0.018, and n3 = 0.010.  The elevations of interest are HA = 280 ft, HB = 290 ft, HC = 
310 ft, and HJ = 250 ft.  Determine the total discharge delivered to junction J. 
 
The energy losses in each pipeline are calculated as follows:  
 

(hf)1 = HA – HJ = 280 ft – 250 ft = 30 ft, 
(hf)2 = HB – HJ = 290 ft – 250 ft = 40 ft, 
(hf)3 = HC – HJ = 310 ft – 250 ft = 60 ft. 

 
As in example 73, Manning’s equation is used to calculate the individual discharges as 
follows: 
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The total discharge is Q = 14.95 cfs + 23.99 cfs + 29.29 cfs = 68.23 cfs 
 
As in the previous parallel pipes example 73, using Manning’s formula for friction losses, 
discharge calculations may also be made for individual pipes with Pipe Flow, NRCS 
Hydraulics Formula program. The discharges calculated will be slightly less than those 
shown above because Pipe Flow, NRCS Hydraulics Formula automatically accounts for a 
local loss at the pipe exit (Kd = 1.0). 
________________________________________________________________________ 
Example 76 - Converging pipelines using Hazen-Williams formula 
The system of Figure 60 has pipelines lengths, diameters, and Hazen-Williams 
coefficients: L1 = 200 ft, L2 = 400 ft, L3 = 150 ft, D1 = 1.00 ft, D2 = 1.50 ft, D3 = 1.00 ft, 
CHW1 = 100, CHW 2 = 80, and CHW 3 = 120.  The elevations of interest are HA = 280 ft, HB 
=  290 ft, HC = 310 ft, and HJ = 250 ft. Determine the total discharge delivered to 
junction J. 
 
The energy losses in each pipeline are calculated as follows:  
 

(hf)1 = HA – HJ = 280 ft – 250 ft = 30 ft, 
(hf)2 = HB – HJ = 290 ft – 250 ft = 40 ft, 
(hf)3 = HC – HJ = 310 ft – 250 ft = 60 ft. 

 
As in example 74, the Hazen-Williams formula is used to calculate the individual pipe 
discharges as follows: 
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The total discharge is Q = 15.50 cfs + 28.95 cfs + 31.60 cfs = 76.05 cfs. 
________________________________________________________________________ 
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AGPipe design software for irrigation and livestock pipe systems, is available at:  
 
http://www.wsi.nrcs.usda.gov/products/W2Q/water_mgt/Irrigation/irrig-mgt-models.html      
 
AGPipe software performs hydraulic calculations and contains databases of local loss 
factors and friction factors, which may be populated by the user. 
 
NRCS is also developing the Pipeline Design Tool for future field office use. 

0332.4 Pipeline Networks  

Pipe networks are utilized to supply water for urban and rural domestic and industrial 
uses. Networks are also used by irrigation districts and occasionally in livestock watering 
systems.  A pipe network is simply a collection of pipes connected in a given geometric 
pattern and having at least one supply point and one delivery or consumption point.  The 
points where individual pipelines join each other are known as junctions or nodes.  Pipe 
networks are schematized as geometric constructs of lines representing the component 
pipes.   
 
 
The main purpose of analyzing a given pipe network is to determine the discharge in each 
pipe and the piezometric head at each node.  These results can be used then to verify that 
certain design guidelines, such as minimum flow velocities and minimum junction 
pressures, are satisfied.  The analysis of pipe networks requires the simultaneous solution 
of a number of mathematical equations that represent equations of continuity at the 
nodes, and equations of energy around closed loops and/or pseudo-loops.   
 
Analyses of simple pipe networks may be performed with a spreadsheet application, but 
spreadsheet use would become very tedious as the number of pipelines and loops 
increase.  There are a number of publicly-available and commercial software that can be 
used for network solution in a more efficient manner, such as the U.S. Environmental 
Protection Agency’s EPANET software. 
 
0333 Appurtenances in Pipelines and Networks 
In this section a number of appurtenances commonly used in pipelines and pipe networks 
are described. 
 

0333.1 Air Vacuum and Release Valves 

Entry and entrapment of air in a pipeline during filling and operation of a pipeline can 
cause development of air pockets. Air pockets tend to restrict and reduce flow or increase 
pumping costs in pipelines.  Air pocket build-up in pumped pipelines can reduce flows by 
5 to 15%.  In low-head, gravity-driven flow, air pocket build-up can reduce flow up to 
50%.  On the other hand, a lack of air entry can cause pipe collapse if a vacuum develops 
behind flowing water as a pipeline empties.  Air valves are of four types: 
 

1. Air/vacuum relief valves, also known as kinetic air valves, large orifice air valves, 
vacuum breakers, low-pressure air valves, and air relief (not release) valves. 
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Large volumes of air are discharged before a pipeline is pressurized, especially at 
pipe filling. Large quantities of air are admitted when the pipe drains and at the 
appearance of water column separation. 

 
2. Continuous acting air and vacuum valves, also known as double orifice air valves, 

or combination air valves, fill the functions of the air/vacuum relief valves and air 
release valves, admitting and releasing large quantities of air when needed, and 
releasing air continuously when the lines are pressurized.  

 
3. Air release valves are also known as automatic air valves, small orifice air valves, 

continuous acting air vents, and pressure air valves. These vents continue to 
discharge air, usually in smaller quantities, after the air vacuum valves close, as 
the line is pressurized. 

 
4. Vacuum relief valves are large orifice valves for vacuum relief only.  These 

valves allow air to enter the pipeline. 
 
 
Guidelines for placement and sizing of air valves: 
 
1. Locate air release valves or continuous-acting air and vacuum valves at all high 

points and at 1/4 mile intervals on pipelines with constant grades.  Locate an air 
release valve at the end of the line.   

 
2. Aviod oversizing air release valves to lessen the possibility of water hammer. See 

section 0334 for more information on water hammer. 
 
3. Locate an air-and-vacuum valve or vacuum valve to allow air to enter behind the 

water as a pipeline is emptied.  Vacuum valves are generally not needed on pipelines 
of less than 3-inch diameter for protection from collapse; however, they may be 
needed to insure complete drainage of the line.  On the other hand, vacuum valves are 
important on low head plastic irrigation pipe and large diameter steel pipe (>24”) to 
prevent collapse of the line. 

 
Valve sizes may be determined for a pipeline by calculating:  (1) flow for both filling and 
emptying the pipeline, (2) pipe collapse pressure, and (3) valve intake or discharge at a 
prescribed pressure across the valve as illustrated below.   
________________________________________________________________________ 
Example 77 – Air valve sizing 
 
Given:  18” diameter, 80 psi, SDR 51, PVC pipe, on a slope of 0.05 ft/ft.  Note that SDR 
is the pipe outside diameter divided by the wall thickness. 
 
a. Determine flow for draining the line using the Hazen-Williams formula (equation 169).  
CHW for PVC pipe is 150:  
 

 151



EFH Chapter 3 Hydraulics                                                                           August 2009             

  cfsQ 34.3705.5.1150432.0 54.063.2   
 
Valves must re-enter air at the same rate as the calculated water flow of 37.34 cfs. 
 
b. Determine pipe collapse pressure using equation for PVC pipe given in ASTM: 
 
 Pc  = [2E/(1-2 )] x [[1/ [do /t] [(do /t)-1]2 ]]   
Where: 
 Pc = collapse pressure of PVC pipe (psi) 
 
 E = Young’s modulus of elasticity   (400,000 psi) 
 
   = Poisson’s ratio    (0.33) 
 
 t = wall thickness (in.)         do = outside diameter of pipe (in.) 
 
 Pc   =  [(2)(400,000)/(1-0.332 )] [[1/ (51) [(51)-1]2 ]]   =  7 psi 
 
Use the collapse pressure determined above or 5 psi, whichever is lower (standard design 
practice). 
 
c. Determine orifice diameter, using orifice equation (equation 198): 
 

ghACQ d 2  

 
 where Cd  = flow coefficient = 0.6 
      
                         A  = orifice area 
 
  h = Pc (from above)/ωair      where: specific weight of air = ωair = .0764 lbs/ft3 
 
 Pc  =  (5 lbs/in2 )  (144 in2/ ft2 ) = 720 psf 
 
Rearranging the orifice formula, A  = Q/ [Cd  (2gh).5]   

 
 A   =  37.34/[0.6 [2(32.2) (720/ .0764)].5] 

       =  0.080 ft2 
 
 A   = (.080 ft2 ) (144 in2 /ft2) = 11.52 in2 
 
 D   = (4A/).5    = [(4)(11.52)/ )].5 
       = 3.83 in, orifice diameter 
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d. Determine the size of orifice required when filling the pipe.  When filling a line, good 
practice is not to exceed 1 fps (note: not all systems provide that much control of filling 
velocity, see next part (e) of this example). Using a filling velocity of 1 fps: 
 
 Q = AV 
 Q = (/4) (1.52) (1) = 1.77 cfs 
 
 Therefore, air must be discharged from the line at a rate of 1.77 cfs 
 
 Size the orifice for 2 psi pressure across the valve (standard design practice). 
 
 Using the orifice formula, as before: 
 
 Pc  = (2 lbs/in2 )  (144 in2 /ft2 ) = 288 psf 
 
 A  = 1.77/[0.6 [2(32.2)(288/.0764)].5 ]  = 0.006 ft2 
 A  = (0.006 ft2 ) (144 in2 /ft2 ) = 0.86 in2 
 
 D    = (4A/).5    =[(4)(0.86)/ ].5    = 1.05 in. orifice diameter. 
 
e. Alternative determination of orifice size required when filling the pipe.  When filling a 
line, with an electric powered pumping plant not equipped with special controllers or 
valves, it may not be possible to limit filling velocity to 1 fps.  The electric motor is on or 
off which might produce filling velocities of up to 5 fps. Using a filling velocity of 5 fps: 

 
Q = AV 

 Q = (/4) (1.52) (5) = 8.84 cfs 
 
 Therefore, air must be discharged from the line at a rate of 8.84 cfs 
 
 Size the orifice for 2 psi pressure across the valve (standard design practice). 
 
 Using the orifice formula, as before: 
 
 Pc  = (2 lbs/in2 )  (144 in2 /ft2 ) = 288 psf 
 
 A  =  8.84/[0.6 [2(32.2)(288/.0764)].5 ]  = 0.03 ft2 
 A  = (0.03 ft2 ) (144 in2 /ft2 ) = 4.32 in2 
 
 D    = (4A/).5    =[(4)(4.32)/ ].5    =  2.35 in. orifice diameter 
  
 
Comparing orifice sizes of 3.83 in. diameter for vacuum relief and 1.05 or 2.35 in. 
diameter for air release shows that the 3.83 in. diameter orifice should be used if an air-
and-vacuum valve, or continuous-acting air-and-vacuum valve, is to be used.  If 
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individual air release and vacuum relief valves are used, then they each may be of the 
size determined.  
________________________________________________________________________ 
 
 
Additional information on the operation and settings for air valves is available from the 
valve manufacturers. 
 
0333.2 Air Vents 
Air vents act similarly to air vacuum or air release valves, however, they allow for the 
release of large volumes of air near pumps or water intakes, pressure boxes, and check 
valves.  Air vents are often used in low-head pipelines.  The figure below shows a simple 
air vent consisting of a cylindrical chamber of diameter Dc located at a distance L from a 
water intake where air entrainment occurs.  The height of the air vent chamber should be 
at least one-half the diameter of the pipe (D/2), and the chamber’s area should be at least 
half of the mainline pipe cross sectional area.   For a cylindrical chamber, the minimum 
diameter is, therefore, 
 

2

2D
Dc                                              [Eq.  192] 

 
 

 
 

Figure 61. Location and dimensions of air vent chamber near a water intake. 
 
The minimum length L, measured from the pipe entrance is given by, Roberson, 
et.al.(1956):  
 

L = 1.76 V D                                          [Eq.  193] 
 
Where: V is the flow velocity in the pipeline.  This equation uses V in fps, D in ft, and L 
in ft.   
 
Using units of the International System (S.I.), the corresponding equation is: 

 
L = 5.77 V D                                         [Eq.  194] 

 
where V is in m/s, D in m, and L in m.   
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________________________________________________________________________ 
Example 78 – Air vent chamber sizing 
A 12-in diameter pipeline is to carry a discharge Q = 2.5 cfs.  Determine the minimum 
diameter, height, and location of an air vent chamber from a water intake where air 
entrainment occurs. 
 
The pipe diameter is D = 1 ft, and the flow velocity can be calculated from equation 31: 
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The chamber should have a height of D/2 = 0.5 ft = 6 in, and a minimum diameter of:  
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The distance from the water intake to the air vent should be at least: 
 

L = 1.76 V D = 1.76×3.18× 1 = 5.60 ft  
________________________________________________________________________ 
 

0333.3 Pressure Control Valves 

Pressure relief valves (or pressure safety valves) are used in pipeline systems to protect 
against excessive pressure.  They are designed to open and discharge small amounts of 
water at a preset pressure limit.  Excess pressure would open the valve and allow some 
water to be released. 
 
Pressure reducing valves are used where a predetermined lower pressure is necessary for 
the proper function of certain components such as emitters in microirrigation systems.  
They can be used in systems with variable pressure to maintain a lower constant pressure 
downstream of the valve.   
 
Pressure-sustaining valves consist of the basic valves and a three-way pressure-sustaining 
pilot. Pressure is sustained at the upstream of the valve to a preset level, while the valve 
outlet drains excessive pressure in order to maintain the preset inlet pressure. Pressure is 
maintained constant, regardless of upstream fluctuating pressure and flow rate. Pressure 
sustaining valves are used on hilly terrain to maintain pressure in elevated areas and 
many other applications where sustained pressure is necessary 
 
Details on the operation of pressure relief, reducing, and sustaining valves are available 
from the valve manufacturers.  The pipeline system pressure range and capacity are 
parameters needed for valve selection.  
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________________________________________________________________________ 
Example 79 – Pressure relief valve selection 
 
Given:  8” diameter, 80 psi, SDR 51, plastic irrigation pipe.  Pipe inside diameter is 7.84 
in = 0.65 ft. Design pipeline velocity is 5 fps. 
 
Select a pressure relief valve to protect against possible surge pressure at the end of the 
pipeline. The valve is set to relieve pressure at 80 psi, which is the pipe pressure rating.  
Size the pressure relief valve to pass the full flow at 150% of the pipe pressure rating:  
 
First, determining the pipeline flow: 
 
            Q = AV 
 Q = (/4) (0.652) (5) = 1.66 cfs 
 
Determining minimum orifice diameter, using orifice equation (equation 198): 
 

ghACQ d 2  

 
 where Cd  = flow coefficient = 0.6 
      
                         A  = orifice area 
 
                         P  =  1.5 (80 lbs/in2 )  (144 in2/ ft2 ) = 17280 psf 
  
              h = P /ωw      where: specific weight of water = ωw = 62.4 lbs/ft3 
 
 
Rearranging the orifice formula, A  = Q/ [Cd  (2gh).5]   

 
 A   =  1.66 / [0.6 [2(32.2) (17280 /62.4)].5] 

       =  0.0207 ft2 
 
 A   = (.0207 ft2 ) (144 in2 /ft2) = 2.98 in2 
 
 D   = (4A/).5    = [(4)(2.98)/ )].5 
  
                  = 1.95 in, orifice diameter 
 
Review of manufacturer’s literature indicate that pressure relief valves with 2-in and 
larger orifices are available. If, for safety concerns, the designer wishes to reduce the 
valve escape velocity, larger-size valves are available or multiple valves may be used. 
Find the dimensions of the valve opening using the continuity equation: A = Q/V. 
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________________________________________________________________________ 
Example 80 – Pressure reducing valve selection 
 
Given:  3” diameter, SDR 41, PVC pipe. Pipe inside diameter is 3.33 in = 0.278 ft. The 
pipe is a 500-ft sprinkler lateral, laid on a 2.5% uphill slope. The lateral’s design velocity 
is 5 fps. A 30 psi pressure is needed at the last (end-of-line) sprinkler. Select a pressure 
reducing valve to maintain a maximum of 20% pressure variation at the sprinklers 
located along the lateral. 
 
a. First, determine the pipeline flow: 
 
            Q = AV 
 Q = (/4) (0.2782) (5) = 0.303 cfs 
 
b. Determine friction losses for the lateral using the Hazen-Williams formula (equation 
171).  CHW for the PVC pipe lateral is 130.  
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The friction loss of 16.27 ft is equivalent to 7.0 psi.  
 
c. Determine minimum lateral pressure needed upstream of the first sprinkler: 
 
This pressure is the sum of the pressure needed at the last sprinkler plus the lateral 
elevation difference plus the friction losses (local losses neglected). 
 
         Elev. Diff. = (0.025 ft/ft) (500) = 12.5 ft, equivalent to 5.4 psi 
 
         P = 30 + 5.4 + 7.0 = 42.4 psi 
 
At the first sprinkler, the pressure needs to be reduced from about 43 psi to at least 36 psi 
(1.2 x 30psi). Review of manufacturer’s literature indicates that a 2-in pressure reducing 
valve is available to meet the need for reduced pressure. To maintain a maximum of 20% 
sprinkler pressure variation and 30 psi at lateral end, pressure reducing valves are needed 
at about the lower half of the lateral’s sprinklers. 
________________________________________________________________________ 
 
 

0333.4 Surge/Air Chambers 

Surge or air chambers are vertical chambers, typically of cylindrical cross-section and 
open to the atmosphere, attached to pipelines to allow pressure relief during hydraulic 
transients.  They perform a similar role as pressure relief valves, except that instead of 
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releasing water flow to another pipeline, they allow the water surface level in the 
chamber to increase in response to a local pressure increase.   During a hydraulic 
transient (unsteady flow) the water surface in the chamber will oscillate until a steady 
state is recovered.  Figure 62, below, shows a schematic of a surge chamber in a pump-
pipeline system.  The surge chamber in this case would help dissipate a pressure wave 
that may result after a sudden failure of the pump.  The system also includes a check 
valve that shuts off flow as the flow reverses. 

 
 

Figure 62. Schematic of pump-pipeline system protected with a surge chamber. 
 
For the situation illustrated in the figure above, if the cross-sectional area of the surge 
chamber is Ac and that of the pipeline is A, the maximum height S of the water surface in 
the chamber above its steady-state level (i.e., the amplitude of the oscillation) is 
calculated as: 

gA

LA

A

Q
S c

c 










2


                                                      [Eq.  195] 

 
where Q is the steady-state discharge, L is the length of pipeline between the upstream 
reservoir and the check valve, and g is the acceleration of gravity (= 9.81 m/s2 = 32.2 
ft/s2).   The time in seconds required for the water level in the chamber to first reach its 
maximum height (one quarter of the period of oscillation) is calculated as, Tullis (1989):  
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2


                                                       [Eq.  196] 

 
The water in the chamber will oscillate until friction in the pipe, and in the chamber, 
slows down the oscillation and produces a complete flow shut off in the pipe upstream of 
the check valve.  Notice that in the absence of a check valve, flow reversal will occur 
through the pump which could affect its operation after start up. 
________________________________________________________________________ 
Example 81 – Surge chamber calculation 
The pipeline in Figure 62 is a 1-ft diameter pipeline and the length from the supply 
reservoir to the check valve is 300 ft.   If the pipe carries a steady-state discharge of 4 cfs, 
determine the maximum water surface increase in a surge chamber of cross-sectional area 
Ac = 0.785 ft2.  If the static level at the chamber is H0 = 500 ft, how high will the water 
level reach in the surge tank?  What is the time T required to reach the maximum water 
elevation? 
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With D = 1.0 ft, the pipe area is: 
 

A = D2/4 = 3.146× (1 ft)2 / 4 = 0.785 ft2 
 
With L = 300 ft, Q = 4 cfs, g = 32.2 ft/s2, then: 
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Thus, the maximum water level is:  
 

H = H0 + S = 500 ft + 24.43 ft = 524.43 ft 
 
The time required to reach the maximum water level:  
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0333.5 Check Valves  

Check valves are valves that allow flow only in one direction.  The pressure of the 
flowing water opens the valves in the preferred direction.  A sudden change in flow 
direction, such as the case of a pump failure, immediately closes the valve avoiding a 
reverse flow.  The lack of a check valve leaves a pump unprotected against backflow, 
which may damage the pump and affect its operational efficiency.  Details on the 
operation of check valves can be obtained from the valve manufacturers.   
 
0334 Hydraulic Transients (Water Hammer)  
The term hydraulic transient refers to a pipeline flow, and its attendant pressure, changing 
rapidly with time.  A hydraulic transient in a pipeline can be originated by the closing of 
a valve, a pump failure, or a sudden increase in pipeline demand.  Water hammers can 
easily be produced by a sudden closure of a valve.  In this case, a pressure wave 
originates at the valve that travels through the pipe at speeds of the order of 1,440 m/s or 
4,700 ft/s.  The pressure wave reflects at the other end of the pipeline, be it a reservoir or 
a main line connection, and travels back towards the valve where pressure builds up 
again.  The process repeats many times until friction dampens the pressure wave and the 
water flow finally stops.  Typically a hammering noise is produced by the transient, thus 
the name water hammer.  Pipelines, appurtenances, and tanks subject to water hammer 
may suffer deformation and damage in joints and other locations.  In designing pipelines, 
care should be taken to prevent the presence of the water hammer phenomenon by 
providing check valves, pressure relief valves, and surge chambers in the pipeline 
systems. 
 
Valve closure hydraulic transients can be minimized by closing the valve slowly.  
Unexpected hydraulic transients, such as a pump failure, will likely produce a high-
magnitude pressure wave in pipelines with its attendant vibration.  To prevent damage to 
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the pipeline in such a case the pipeline should be provided with valves or surge chambers.  
The pipeline will be able to better survive a sudden hydraulic transient if it is buried, or 
otherwise anchored securely. 
 
The formal analysis of hydraulic transients in a pipeline includes the simultaneous 
solution of two partial differential equations involving the discharge Q and the total head 
H at different locations x along the pipeline and at different times t.   This type of analysis 
requires complex computer programming, considered beyond the scope of this handbook.   
 
The closing of a valve is a common cause of hydraulic transients.  If closing a valve 
changes the flow velocity in a pipe from V to Vf, the instantaneous increase in pressure 
near the valve, p, is calculated by using the equation: 
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                                                     [Eq.  197] 

 
Where  is the specific weight of water (typically,  = 62.4 lb/ft3), g is the acceleration 
of gravity (= 32.2 ft/s2), Ev is the bulk modulus of elasticity of water, t is the pipe wall 
thickness, and E is the modulus of elasticity for the pipe material.   A typical value of the 
modulus of elasticity for water is Ev = 311,000 psi at 60oF (see Exhibit 4).  Modulus of 
elasticity values for common pipeline materials include steel (E = 30,000,000 psi), cast 
iron (E = 15,000,000 psi), concrete (E = 3,000,000 psi) and PVC (E = 400,000 psi, with 
some variation by manufacturing class). 
 
For additional information on water hammer analyses see Finnemore and Franzini (2002) 
or USDA (2005).  
 
 
________________________________________________________________________ 
Example 82 – Pressure increase with sudden closing of a valve 
Consider a steel pipe (E = 30,000,000 psi) with a wall thickness t = 0.25 in = 0.25/12 ft = 
0.02 ft, and a diameter D = 0.5 ft.  Closing a valve in a pipe that reduces the flow velocity 
from V = 2.5 fps to Vf = 0.5 fps for water at 60oF in such a pipeline produces a pressure 
increase of: 
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
p = 16,604 lb/ft2 = 16,604 /144 psi = 115 psi 

 
The typical value for atmospheric pressure is 14.7 psi, thus, an increase of 115 psi 
represents almost eight times the atmospheric pressure.  Pipe should have adequate 
pressure ratings or otherwise be protected to withstand hydraulic transients. 
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________________________________________________________________________ 
 
 
0335 Cavitation 
When the local absolute pressure in a closed conduit (by virtue of its elevation and the 
hydraulic characteristics of the system) falls below the vapor pressure of water, vapor 
bubbles, or cavities, can form in the flow.   These cavities are then carried with the flow 
towards zones of higher pressure where they implode (collapse onto themselves) 
producing a characteristic noise, vibration, and even pitting of the pipeline walls at the 
point of bubble collapse.  Cavitation conditions are to be avoided because of their 
damaging effects, since cavitation can cause pitting and perforations in pipes, and even 
collapsing of pipes if the pressure drop at a given location is excessively large.  Locations 
where cavitation may occur are the high point of a pipeline, or the suction side of a pump 
in a pipeline system.   Cavitation is undesirable for pump operation since it can reduce 
pump efficiency and cause deterioration of the impeller.  An example of cavitation 
analysis in a siphon is presented below.  Cavitation was introduced in section 0304  
Physical Properties of Water, in relation to the vapor pressure of water. 
________________________________________________________________________ 
Example 83 – Cavitation at high point of a siphon 
Figure 63 below illustrates a conduit delivering water from reservoir (A) to reservoir (B).  
Such an arrangement, where the middle part of the conduit raises above the free surface 
of both reservoirs is called a siphon.  To start the siphon, it is necessary to fill the conduit 
with water by using, for example, a vacuum pump at point (C).  Once the water flow is 
established the vacuum pump can be removed and the system continues flowing as long 
as the free surface at reservoir (A) is higher than that at reservoir (B).  Siphon systems 
can be set up to overcome a hill separating two reservoirs or to discharge water 
downstream over a dam. 
 
 

 
 

Figure 63.  Siphon conduit connecting two reservoirs. 
 
Suppose that the siphon has a diameter D = 1.0 ft, a length L =200 ft, and the material is 
smooth enough that the roughness can be taken as e = 0.  Let the difference of elevation 
between the reservoirs be H = 20 ft, and the elevation difference of point (C) above the 
level of reservoir (A) be hC = 10 ft.  Local loss coefficients are Ke = 0.5 and Kd = 1.0 for 
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the entrance and discharge points at reservoirs (A) and (B), respectively.  (a) Determine 
the discharge in the siphon.  (b) Determine the absolute pressure at high point (C), 
located half way through the conduit, and check if cavitation is likely to occur.  Assume 
that the water temperature is 60oF, and use an atmospheric pressure patm = 14.7 psi.  (c) 
What is the maximum value of hC to prevent cavitation from taking place at point (C)?   
 
(a) Writing the energy equation between points (A) and (B), with VA = VB = 0, using 
gage pressures pA = pB = 0, taking zA = H and zB = 0, and including friction (using the 
Darcy-Weisbach equation to estimate friction losses) and local losses (K = 1.5), the 
resulting equation is:  
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Exhibit 4 gives the kinematic viscosity,  = 1.217x10-5 ft2/s, for water at 60oF.  A 
spreadsheet application gives Q = 14.73 cfs.  
 
(b) To determine the absolute pressure pB at point (C) write the energy equation between 
points (A) and (C):  
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With VA = 0, gage pressure pA = 0, and elevations:  
 

zA = H = 20 ft 
 

zC = H + hC = 20 ft + 10 ft = 30 ft 
 
The flow velocity at point (C) is the constant value:  
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And the Reynolds number is:  
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With this value of the Reynolds number (indicating turbulent flow) and relative 
roughness e/D = 0, the Swamee-Jain equation (equation 162) produces the following 
friction factor: 
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f = 0.0108 

 
The friction losses (using the Darcy-Weisbach equation) and local head losses (entrance 
losses) are calculated as follows: 
 

ft
sft

sft

ft

ft

g

V

D

L
fh f 9.5

/2.322

)/75.18(

0.1

)2/200(
0108.0

2

)2/(
2

22




  

 

ft
sft

sft

g

V
KhL 73.2

/2.322

)/75.18(
5.0

2 2

22




  

 
Substituting values calculated above into the energy equation: 
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Solving for the pressure head at point (C): 

ft
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And, using  = 62.4 lb/ft3, the gage pressure at point (C) is: 
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 Calculating the absolute pressure at point (C) and comparing to the vapor pressure,  pv = 
0.26 psi, for water at 60oF (see Exhibit 4): 
 

  psipsipsipsippp atmCabsC 26.026.47.1444.10   

 
Since the absolute pressure at point (C) is larger than the vapor pressure of water at a 
temperature of 60oF, no cavitation would occur at point (C) for the siphon system shown. 
 
(c) To determine the maximum height hC to avoid cavitation at point (C), the absolute 
pressure at point (C) is set equal to the vapor pressure of water at 60oF, and the value of 
hC  from the energy equation between points (A) and (C) is calculated.  
 
The gage pressure at point (C) is: 
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  psipsipsippppp atmVatmabsCC 44.147.1426.0  . 

 
The corresponding pressure head is:  
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The velocity head, head losses, and elevation of point A are the same as in the energy 
equation used above.  The elevation of point (C) is: 
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Thus, the energy equation between (A) and (C) becomes: 
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The resulting value of hC is:  
 

(hC )max = 19.23 ft 
________________________________________________________________________ 
 
0336 Culverts  
A culvert is a relatively short conduit connecting two open channels and typically located 
under a road or highway.  Figure 64 below illustrates three possible flow regimes when a 
culvert’s inlet is submerged. 
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Figure 64. Flow regimes for submerged inlet flow in culverts. 
 

The flows of Figure 64 (i) and 64 (ii) are said to be under outlet control, while that of  64 
(iii) is under inlet control.  In Figure 64, V stands for the flow velocity in the full-flowing 
culvert; HW stands for head water and TW for tailwater depths, i.e., the depths of flow 
upstream and downstream of the culvert.  D is the diameter of the culvert, h is the vertical 
distance from the head water surface to the centerline of the culvert, and h is the 
difference between the headwater and tailwater depths. 
 
Publication FHWA-NHI-01-020, HYDRAULIC DESIGN OF HIGHWAY CULVERTS, 
Hydraulic Design Series No. 5, 2001, (FHWA, HDS 5) available from the Federal 
Highway Administration (FHWA) provides detailed information for the analysis of 
culvert flow.    This publication is available at:  
 
http://www.cflhd.gov/design/hyd/hds5_03r.pdf  
 
The FHWA also provides a computer program, HY-8, for calculating culvert flow.  The 
program is available at: 
 
 http://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/  

0336.1 Culvert Flow with Inlet Control 

This case is represented in Figure 64(iii).  The capacity of the culvert is limited by the 
capacity of the culvert opening, rather than by conditions farther downstream.  In such 
case, the open-channel normal depth of flow d0 in the culvert is less than the barrel height 
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(height of the culvert section), and the entrance does not allow enough water into the 
culvert to allow filling the full barrel height.  Thus, the flow is under inlet control.  The 
discharge Q into the culvert can be calculated using the following equation (orifice flow): 
 

ghACQ d 2                                                      [Eq.  198] 

 
Where A is the area of the inlet section, Cd is a discharge coefficient, g is the acceleration 
of gravity, and h is the smaller vertical distance from the HW surface to the centerline of 
the inlet or the HW and TW depth difference. 
 
For inlet control, the required HW head is calculated as: 
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Values of the discharge coefficient Cd vary from 0.62 (for a sharp-edged inlet without 
contraction suppression) to 1.0 (for a well-rounded inlet).  Use the value of Cd = 0.60 as 
a conservative reference value. Contraction suppression refers to the absence of 
contracted flow at the inlet cross-section.  Suppressed contraction at the bottom of the 
inlet occurs when the inlet invert is set at stream bed level.  Partial contraction 
suppression can be achieved by using flared wingwalls at the inlet approach. 
 
As an alternative to equation 198 (general orifice flow equation), FHWA, HDS 5 includes 
a submerged inlet control equation, based on extensive laboratory testing.  
________________________________________________________________________ 
Example 84 – Circular culvert calculation under inlet control 
A circular culvert of diameter D = 2 ft, carrying a discharge Q = 40 ft3/s, is to be 
designed under inlet control.  What is the required headwater height, h, above the culvert 
centerline if the inlet discharge coefficient is Cd = 0.75.  
 
The pipe area is:  
 

A = D2/4 = 3.1416× (2 ft)2 / 4 = 3.14 ft2 
 
And the HW head is: 
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Checking that HW depth exceeds 1.2D: 
 

ftftftftftdepthHW 4.222.148.50.148.4   
________________________________________________________________________ 
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0336.2 Culvert Flow with Outlet Control 

Figures 64(i) and 64(ii) show instances of flow under outlet control.  In 64(i) the outlet is 
fully submerged, a condition that may result from inadequate channel capacity 
downstream or by an existing backwater from a connecting stream.  Even if the tailwater 
depth is below the barrel height, as shown in Figure 64(ii), the normal flow depth d0 
within the culver is greater than the culvert height D, and the culvert flows full.   
 
Analysis of flow for the outlet control cases of Figures 64(i) and 64(ii) is approached by 
writing the energy equation between the free surface of the headwater section (1) and that 
of the tailwater section (2).  The elevation of the outlet (section 2) is taken as a reference, 
so that z1 = h, and z2 = 0.  Using gage pressure, p1 = p2 = 0.  Also, V1 = 0, and V2 = V.  
Including head losses in the culvert, the resulting energy equation is: 
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In the simplest case, the head losses hL include friction head losses hf and entrance losses 
he.  Friction head losses are calculated using Manning’s equation: 
 

3/42

22

hu
f RC

LVn
h                                                        [Eq.  201] 

 
Where n is Manning’s resistance coefficient, Cu is the coefficient in Manning’s equation 
(Cu = 1.0 for units of the SI, and Cu = 1.486 for English units), and Rh is the hydraulic 
radius in the culvert cross-section.   Entrance losses are calculated using:  
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A higher value for Ke, the entrance loss coefficient, gives a higher head loss.  Values of 
the entrance loss coefficient are presented in Table 8, Section 0331.6 Local Losses in 
Pipelines.  Also see FHWA, HDS 5 for additional values of entrance loss coefficients.  

    
Substituting the sum of equations 201 and 202 for hL in equation 200 produces the 
equation: 
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The approach presented in FHWA, HDS 5 includes the use of a bend coefficient Kb, and 
an exit coefficient Kx (to replace the value of 1 in equation 203); the resulting equation is: 
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Where Kp is the pipe friction loss coefficient, which, in equation 203, is equal to: 
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A typical culvert design consists in determining the required diameter of a culvert given 
the design discharge, the inlet entrance conditions, the pipe material and length, the 
culvert slope, and the headwater and tailwater depths.  The use of Culvert Flow, USDA-
NRCS Hydraulics Formula program is illustrated in the following example. 
________________________________________________________________________ 
Example 85 – Circular culvert sizing 
It is desired to install L = 50 ft of concrete culvert pipe, n = 0.012, in a drainage channel 
for a road crossing.  The design discharge is Q = 80 cfs with a tailwater depth of d2 = 3.0 
ft.  The slope of the culvert is to be 0.002 ft/ft.  The maximum headwater depth is d1 = 
5.0 ft.  Determine the required pipe diameter, if the inlet has a groove edge and a 
headwall.    
 
The elevation change in 50 ft of culvert is:  
 

z = S0 L = 0.002 ft/ft× 50 ft = 0.1 ft 
 
Since the culvert outlet elevation is taken to be “0”, the inlet elevation is 0.1 ft.  
 
The figure below shows the calculation of the discharge for culvert flow using the 
Culvert Flow tab in the USDA-NRCS Hydraulics Formula program for a guessed 
diameter of 24 in = 2 ft.  The result shows Q = 27.9 cfs, which is smaller than the 
required discharge of 80 cfs.  The diameter is increased until Q = 80 cfs.  The following 
table shows the convergence of values: 
 

D (in) Q (cfs) 
24 27.9 
36 67.1 
48 105.7 
42 88.0 
39 78.7 
40 81.8 

 
A standard sized concrete culvert of D = 42 in will carry the required 80 cfs. 
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________________________________________________________________________ 
Example 86 - Culvert discharge calculation 
Calculate the discharge in a PVC culvert with a diameter of 2 ft (24 in), and a length of 
30 ft if the head wall inlet has a groove edge.  The inlet invert is located 0.23 ft above the 
outlet invert (set as zero), the headwater depth is 3.0 ft (headwater elevation = 3.23 ft), 
while the tailwater depth is 1.5 ft. 
 
The USDA-NRCS Hydraulics Formula program aids in the selection of the values of 
Manning’s n and the entrance coefficient Ke.  The discharge calculation is shown below: 
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Thus, the calculated discharge is Q = 22.9 cfs and the inlet controls the flow (the 
equations associated with inlet control apply, see section 0336.1). 
________________________________________________________________________ 
 
In some applications the culvert headwater depth is below the barrel height producing 
free or unsubmerged inlet conditions. The techniques of open channel flow presented in 
section 0324.1 Gradually Varied Flow can be used to solve for the critical depth of flow 
and the headwater depth.  This analysis can allow for entrance and exit losses.  As an 
alternative, FHWA, HDS 5 includes an unsubmerged inlet control equation, based on 
extensive laboratory testing.  
 
 
An alternative for culvert flow calculations is the use of nomograms.  Exhibit 7 shows 
examples of culvert flow calculations using nomograms for both inlet and outlet control.   
 
0337 Sprinkler Irrigation    
Sprinkler systems irrigate by spraying water in a desirable pattern. Sprinkler systems 
typically include a pump, a main pipeline (or, simply, main), lateral pipelines (or, simply, 
laterals), risers, and sprinkler heads.   
 
Sprinkler systems can be classified as permanent, semi-permanent, portable, and 
continuous move.  Permanent systems have permanently located main and lateral 
pipelines and pumping plant.  Semi-permanent systems consist of a permanent pumping 
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plant and main pipeline to which portable lateral pipelines can be attached.  Portable 
sprinkler systems have both portable main and lateral pipelines.  Continuous move 
systems include central pivot systems and linear move systems. 
 
Central pivot systems consist of a continuously moving lateral pipeline that rotates about 
a pivot point producing a circular irrigation pattern.  A central pivot sprinkler system is 
shown below. 
 

 
 

Figure 65.  Central pivot irrigation system near Grace, Idaho. 
 
 
Sprinklers can be classified as low-pressure, medium-pressure, and high-pressure 
sprinklers.  Specific characteristics for commercial sprinkler heads, such as the pressure 
and discharge ranges for their operation, and the wetted diameter (effective distance of 
water spraying) are typically provided by manufacturers.   Sprinkler types that operate 
under higher operating pressure provide a larger wetted diameter. 
 
Low-pressure spray types of sprinklers include fixed sprays, spinners, and rotating 
sprays.  Low-pressure sprinklers have become the most common sprinkler type today. 
 
A high-pressure sprinkler generally consists of one or two nozzles that rotate under the 
effect of a hammer blade.  The water spray impinges on a hammer blade which  produces 
an intermittent water spray and rotates the sprinkler head.  A high-pressure sprinkler head 
is typically mounted on a 1-inch (25 mm) diameter riser attached to a pipe.   
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Figure 66 shows an schematic for the layout of a sprinkler system with a pump (P), a 
main line, and two lateral lines.  Basic information needed for the design of a sprinkler 
irrigation system includes a contour map of the plot to irrigate (this provides information 
on the ground slopes on which the pipelines will be laid), the soil characteristics 
(maximum application rate should not exceed the soil infiltration rate), source and quality 
of water available, crops to be irrigated, and local climate.   

 
Figure 66. Schematic of a sprinkler system layout. 

 
Some basic guidelines for sprinkler system alignment include: (1) the laterals should be 
perpendicular to the prevailing wind direction; (2) the main line should be as short as 
possible to reduce head losses; (3) the pump should be located at the center of the 
irrigated area if possible; and (4) provide for future expansion of the system. 
 
Detailed design guidelines and calculations for sprinkler irrigation systems are available 
in NRCS, NEH15, Irrigation, Chapter 11, Sprinkle Irrigation.  This reference may be 
downloaded from the engineering handbooks listed at: 
 
http://directives.sc.egov.usda.gov/ 
 
0338 Microirrigation  
Microirrigation (MI) is accomplished by the frequent application of small quantities of 
water as drops, tiny streams, or miniature spray through emitters or applicators placed 
along a water delivery line. MI encompasses a number of methods or concepts such as 
bubbler, drip, subsurface drip, mist and spray. The emitters are located at or near the 
plant root zone thus placing water only where the plant can use it.  Thus, microirrigation 
can be very effective for widely spaced crops (such as orchards, melons, cucumbers).   
 
Microirrigation systems include a control unit or system through which water is 
controlled, filtered, and possibly provided with additives.  The control unit is typically 
located at the highest place in the field, and the pipelines laid parallel to the terrain slope.  
As with sprinkler irrigation systems, the main line in a microirrigation system is often 
divided into secondary branches which connect to the lines with the emitters.  The main 
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and secondary lines are frequently fitted with flow or pressure regulators.   Devices are 
usually provided at the end of the lines to flush and clean the system. 
 
Water is dissipated from a pipe distribution network under low pressure in a 
predetermined pattern. The shape and design of the emitter reduces the operating pressure 
in the supply line, and a small volume of water is discharged at the emission point.  
 
Detailed design guidelines and calculations for microirrigation systems are available in 
NRCS NEH15, Irrigation, Chapter 7 - Trickle Irrigation.  This reference may be 
downloaded from the engineering handbooks section of NRCS eDirectives Electronic 
Directives System: 
 
http://directives.sc.egov.usda.gov/ 
 
 
0340 Water Flow Measurements 
Water flow measurement devices and techniques for measuring pipe flow and open 
channel flow will be presented in this section.  For additional details, refer to the 
USBR/USDA-NRCS/USDA-ARS (2001) Water Measurement Manual, available online 
at: 
 
http://www.usbr.gov/pmts/hydraulics_lab/pubs/wmm/ 
 
0341 Measurements in Pipelines 
Most flow measurements in pipelines are accomplished by relating the pressure drop 
through a device to the discharge in the pipeline.   
  
0341. 1 Orifice Meters 
An orifice meter consists of a reduction of the diameter of the flow by means of a ring 
inserted between two sections of a pipe.  A schematic of an orifice meter is shown below.   

 
Figure 67. Schematic of flow through an orifice plate in a pipe. 

 
Downstream of the orifice, due to the curvature of the streamlines detaching from the 
orifice, the flow cross-section contracts such that the area at this vena contracta is smaller 
than the area of the orifice.  Let Ao be the area of the orifice, then, the area of the vena 
contracta can be written as A2 = CcAo, where Cc (a value less than 1.0) is known as the 
contraction coefficient.   
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Assuming that the contraction of the flow does not occur, an ideal velocity at section 2, 
say, Vi , could be calculated in terms of continuity, i.e.,  V1A1 = ViAo.  The actual 
velocity at the vena contracta can be calculated by V2 = CvVi, where Cv is a velocity 
coefficient. 
 
The theoretical discharge would be Qi = ViAo, however, the real discharge is calculated 
as Q = V2A2 = (CvVi)(CcAo) = (CcCv)(ViAo) = CdQi.  Thus, we have introduced a 
discharge coefficient Cd = CcCv to calculate the actual discharge in terms of the 
theoretical discharge. 

Figure 68, below, shows typical values of the contraction (Cc), velocity (Cv), and 
discharge (Cd)  coefficients for different orifices. 
 

 
 

Figure 68.  Contraction, velocity, and discharge coefficients for flow through orifices: (a) sharp thick 
wall, (b) rounded thick wall, (c) chiseled thin wall, (d) sharp thin wall. 

 
To relate the discharge through the orifice to the drop in pressure between sections (1) 
and (2) in a horizontal pipeline, such as in Figure 67, the Bernoulli equation is used.   
Including a discharge coefficient, the discharge through the orifice is given by 
 
 

2
2

2
1

21
21

)(2

AA

hhg
AACQ d 


                                      [Eq.  206] 

 
Where h1 and h2 are the piezometric heads at sections (1) and (2), respectively, with h1 = 
z1 + p1/, and h2 = z2 + p2/.  If the orifice meter is located in a horizontal pipeline, the 
piezometric heads may be written as h1 =  p1/, and h2 = p2/.  The piezometric heads 
are illustrated in the following figure. 
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Figure 69. Schematic of orifice plate 

 
 
 
 
 
 

 
Figure 70.  Plexiglas pipe with an orifice meter and piezometric tubes, used in the laboratory to 

demonstrate orifice flow  
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________________________________________________________________________ 
Example 87 – Flow discharge through an orifice meter 
An orifice meter of diameter Do = 0.30 ft is placed in a pipeline of diameter D1 = 0.50 ft.   
Measurements of the piezometric heads upstream and downstream of the orifice indicate 
that h1 = 2.0 ft and h2 = 1.3 ft.  Using a chiseled thin-walled orifice with a contraction 
coefficient Cc = 0.62 and a discharge coefficient Cd = 0.61, determine the flow through 
the pipe. 
 
The areas of the pipe and orifice are:  A1 = D1

2/4 = (0.50)2/4 =0.196 ft2, Ao = Do
2/4 

= (0.30)2/4 = 0.070 ft2.  The area of the vena contracta is A2 = CcAo = 0.620.070 = 
0.043 ft2.  The discharge is:  
 

cfs
AA

hhg
AACQ d 18.0

043.0196.0

)3.10.2(2.322
043.0196.061.0

)(2
222

2
2

1

21
21 








  

________________________________________________________________________ 
 
 

0341.2 Venturi Meters 

A Venturi meter consists of a contracted section (known as the throat) connected to the 
pipe upstream through a short contraction, and to the pipe downstream through a longer 
expansion.  The diameter of the throat is D2, while that of the pipe is D1.   
 
 

 
 

Figure 71. Schematic of a Venturi meter 
 
The equation for the discharge in the Venturi meter is the same as for the orifice meter, 
except that A2 corresponds to the throat area and is not calculated through a contraction 
coefficient.   The discharge coefficient Cd can be found from calibration. 
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Figure 72.  Plexiglas Venturi meter with piezometric tubes, to demonstrate flow through the meter. 
 
 
 
 

 
 

Figure 73.  Venturi meter installed in a 4-inch pipeline, with manometer lines attached at the 
upstream end and at the throat of the meter. 

 
 
 
________________________________________________________________________ 
Example 88 – Flow discharge through a Venturi meter 
A Venturi meter with a throat diameter D2 = 0.5 ft is installed in a pipe of diameter D1 = 
1.0 ft. Measurements of the piezometric heads upstream and at the throat of the Venturi 
meter indicate that h1 = 2.5 ft and h2 = 0.5 ft.  With a discharge coefficient Cd = 0.8, 
determine the flow through the pipe. 
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The areas of the pipe and of the Venturi’s throat are:   
 

A1 = D1
2/4 = (1.00)2/4 = 0.785 ft2, 

 
A2 = D2

2/4 = (0.50)2/4 =0.196 ft2. 
 
The discharge is (equation 206):  
 
 

cfs
AA

hhg
AACQ d 84.1

196.0785.0

)5.05.2(2.322
196.0785.08.0

)(2
222

2
2

1

21
21 








 . 

 
________________________________________________________________________ 
 
 
 
 

0341.3 Nozzle Meters 

Nozzle meters reduce the flow cross-section, as does the orifice meter, by utilizing a 
nozzle attachment illustrated below. 
 

 
 

Figure 74. Schematic of a nozzle meter. 
 
The nozzle is characterized by its opening diameter d, and area, Ad.  The equation for the 
discharge is written as: 
 

4
21

1

)(2












D

d

hhg
ACQ dd                                         [Eq.  207] 
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Where h1 and h2 are the piezometric heads at sections (1) and (2), respectively, and Cd is 
the discharge coefficient.  The value of Cd depends on the type of nozzle, and is obtained 
by calibration.  Calibration can be performed by attaching the nozzle to a pipe and 
measuring the discharge Q through the pipe for different pressure drops (h1-h2).   Since 
the diameters d and D can be measured or are provided by the manufacturer, equation 
207 can be used to obtain the discharge coefficient Cd. 
________________________________________________________________________ 
Example 89 – Flow discharge through a nozzle meter 
A nozzle meter whose opening has a diameter d = 0.10 ft is placed in a pipeline of 
diameter D1 = 0.25 ft.   Measurements of the piezometric heads upstream and 
downstream of the orifice indicate that h1 = 2.5 ft and h2 = 1.5 ft.  With a discharge 
coefficient Cd = 0.90, determine the flow through the pipe. 
 
The area of the nozzle opening is:   
 

Ad = d2/4 = (0.10)2/4 = 0.0078 ft2 
 
 
 
The discharge is  
 

cfs

D

d

hhg
ACQ dd 057.0

25.0

10.0
1

)5.15.2(2.322
0078.090.0

1

)(2
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21 


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

















  

 
________________________________________________________________________ 
 

0341.4 Elbow Meters 

An elbow meter consists of attaching pressure transducers to the inner and outer walls of 
a pipe elbow, as shown in Figure 75 below.    
 
Let p = |p1-p2| be the absolute value of the pressure difference between the inner and 
outer walls of the elbow.   Equivalently, the pressure difference can be written as p = 
h, where  is the specific weight of the liquid.  The discharge through the elbow can 
be calculated as  
 

hC
p

CQ 





                                  [Eq.  208] 

 
where C is a calibration constant unique for a given elbow.   If the pressure taps in the 
elbow meter were connected to a manometer, the quantity h could represent the reading 
in the manometer. Refer to section 0311.1 Piezometers and Manometers for detailed 
explanation of manometers. 
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Figure 75.  Schematic of an elbow meter. 
 
________________________________________________________________________ 
Example 90 – Flow discharge through an elbow meter 
An elbow meter has been calibrated so that when the pressure difference between its 
inner and outer walls is measured in ft; the calibration constant is C = 15.2.  Determine 
the discharge, in cubic feet per second (cfs), when h = 0.5 ft.   
 

The discharge is:                 cfshCQ 75.105.02.15   
________________________________________________________________________ 
 
 
For the orifice, nozzle, Venturi, and elbow meters, the discharge Q varies with the square 
root of the piezometric head drop h.   A plot of this relationship is referred to as the 
rating curve (of characteristic shape).  Note that cross-section rating curves in open 
channel flow have the same characteristic shape, but with the axes exchanged. The elbow 
meter used in the example above has a rating curve shown in the figure below. 
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Rating Curve - Elbow Meter
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Figure 76.  Values of the discharge can be interpolated graphically from the rating curve of a given 
device. 

 
 

0341.5 Magnetic and Ultrasonic Meters 

Magnetic meters are attached to the outside of a pipe or sometimes placed inside the pipe 
to measure discharge.  In a magnetic meter the distortion in the magnetic field due to the 
moving water is related to the flow discharge.  Magnetic meters are calibrated so that a 
voltage read in the meter can be converted to discharge.   There are a variety of 
commercial magnetic meters.  Instructions on the installation and operation of magnetic 
meters are available from the manufacturers. 
 
The ultrasonic flowmeter is a clamp-on device that measures pipeline flow using the 
principle of sonic beam phase shift.  Instructions on the installation and operation of 
ultrasonic meters are available from the manufacturers.  Research information may also 
be available from university extension services such as the March 2008 Using Ultrasonic 
Flow Meters in Irrigation Applications from the University of Nebraska-Lincoln 
Extension, Institute of Agriculture and Natural Resources: 
 
http://www.ianrpubs.unl.edu/epublic/live/g1426/build/g1426.pdf 
 
 
0342 Measurements in Open Channels 
Measurements in open channel flow include depth, velocity, and discharge. 
 

 181

http://www.ianrpubs.unl.edu/epublic/live/g1426/build/g1426.pdf


EFH Chapter 3 Hydraulics                                                                           August 2009             

0342.1 Depth Measurements 

Depth measurements can be carried out by using a graduated rod or ruler, whether 
permanent or portable.   The figure below shows a permanent depth gage in an open 
channel. 
 
 

 
 

Figure 77.  Depth gage showing water surface elevation. 
 
 
In small laboratory flumes, point gages with an attached Vernier scale can be used to 
measure the water depth.  When using a point gage in a flume, the Vernier scale is read 
when the point gage touches the flume bed, and then when the point gage touches the 
surface of the water.  The difference between these two readings is the water depth. 
Figure 78, below, shows a point gage with a Vernier scale.   
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Figure 78.  Point gage in laboratory flume with Vernier scale reading of 23.7. 
 

0342.2 Velocity Measurements 

Measurements of the water velocity in open channel flow can be performed through a 
variety of methods.  Some of these methods are discussed in the following sections. 
 

0342.2.1. Propeller/Paddle Wheel Meters 

A propeller or paddle wheel meter consists of a moving propeller or buckets whose rate 
of rotation can be recorded and related to the local flow velocity.  Calibration information 
for these meters can be obtained from the manufacturer or from laboratory tests.  Small 
propeller meters can be used in laboratory flumes to measure local velocities.  Propeller 
meters used in larger streams typically have a streamlined body attached to the propeller 
to minimize effects on the flow. 
 

0342.2.2. Vortex Meter 

Obstacles in a flow, such as a cylinder or a block, generate a train of vortices downstream 
of the obstacles.  A vortex flow meter detects the vortex field produced by a given 
obstacle and relates it to the local velocity.  Vortex flow meters are available from a 
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number of manufacturers.  Information on setting up and operating these meters can be 
obtained from the manufacturers. 
 

0342.2.3. Doppler (Acoustic) Meters 

Doppler (or acoustic) meters use an acoustic signal released into the water at a point and 
picked up by a sensor a short distance downstream.   The time required to pick up the 
signal is related to the local flow velocity.  A variety of commercial Doppler meters 
exists.  Details for the set up and operation of these meters are available from the 
manufacturers. 
 

0342.2.4 Velocity Measurements with Floaters 

A simple way to measure velocity in open channels consists of measuring the time, t, 
required by a floater to travel a certain distance, x, in the channel.  A straight channel 
reach is needed to perform floater velocity measurements.  Neutrally-buoyant floaters are 
preferred because they are less impacted by wind.  The flow velocity at the free surface is 
simply, x/t.  Measurements in laboratory flumes indicate that the mean velocity is 0.85 
times the free-surface velocity.  
________________________________________________________________________ 
Example 91 – Flow velocity calculation using the float method 
While performing a floater velocity measurement in a straight reach of an irrigation canal 
it is found that the floater requires 56 sec to travel 100 ft.  Estimate the surface velocity as 
well as the mean velocity in the canal. 
 
With x = 100 ft, and t = 56 sec, the surface velocity is Vs = x/t = 100ft/56 sec = 1.78 fps.  
The mean velocity is V = 0.85Vs = 0.851.78 fps = 1.52 fps. 
________________________________________________________________________ 
 
0342.2.5. Laser-Doppler and Particle-Velocity Measurements 
These types of velocity measurements are suitable in the laboratory.   In a Laser-Doppler 
velocimeter, two or three laser beams are focused at a point in the flow.  Air bubbles or 
any other impurity in the water passing through the laser focus point will produce a 
Doppler shift which is detected by an optical sensor.   Calibration of the laser Doppler 
velocimeter allows for the determination of the local velocity at the laser focus point. 
 
In a Particle velocimeter, tracers introduced in the flow reflect light from a source and the 
location of the particles is optically traced allowing for the instantaneous description of 
flow fields. 
 
 

0342.3 Sharp-crested Weirs 

Sharp-crested weirs may be as simple as a thin plate placed across a rectangular open 
channel, as illustrated in Figure 79 below.  Such a weir is referred to as a suppressed 
weir, as opposed to a contracted weir shown in Figure 80.  The difference is that in a 
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contracted weir the weir crest, length = L, does not extend the full width of the channel, 
b.  Whereas in a suppressed weir b = L.  In both cases of rectangular weirs P represents 
the weir height and H is the weir head.  The head H is measured from the crest of the 
weir to the water surface at a point upstream so that the curvature of the flow streamlines 
is minimal (3 to 4 times the maximum value of H expected is suggested), as illustrated 
below.  
 
 

 
 

Figure 79. Suppressed sharp-crested weir in a rectangular channel. 
 

 
Figure 80. Contracted sharp-crested weir in a rectangular channel. 

 
For the suppressed sharp-crested weir, the discharge Q over the weir is calculated using:  
 

2/32
3

2
HLgCQ d                                  [Eq.  209] 

 
Where Cd is a discharge coefficient, g is the acceleration of gravity (g = 9.806 m/s2 = 
32.2 ft/s2).  The quantities L and H were defined previously.  The value of Cd can be 
obtained using Rehbock’s formulas: 
 

P

H

H
Cd 


 08.0

305

1
605.0 , H(ft), P(ft)                      [Eq.  210] 

or,  

P
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H
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
 08.0

1000

1
605.0 , H(m), P(m)                    [Eq.  211] 
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These equations are valid for P in the range of 0.33 ft to 3.3 ft (0.10 m to 1.0 m) and for H 
in the range 0.08 ft to 2.0 ft (0.025 m to 0.60 m), and the ratio H/P < 1.0.    
 
A photograph of a sharp-crested weir is shown below. 
 

 
 

Figure 81.  Sharp-crested weir in operation (USDA). 
________________________________________________________________________ 
Example 92 – Discharge over a suppressed rectangular weir 
A suppressed rectangular weir is located in a 3-ft wide rectangular open channel.   If the 
weir is 0.5 ft high and the head measured upstream of the weir is H = 0.4 ft, determine the 
discharge over the weir using Rehbock’s formulas. 
 
For this case L = b = 3 ft, P = 0.5 ft, and H = 0.4 ft, and H/P = 0.4/0.5 = 0.8.  Rehbock’s 
formula in units of the English System indicates that the discharge coefficient Cd is given 
by: 

677.08.008.0
4.0305

1
605.008.0

305

1
605.0 







P

H

H
Cd . 

 
The discharge is calculated as: 
 

cfsftftsftHLgCQ d 75.2)4.0(3/2.322
3

2
677.02

3

2 2/322/3  . 

________________________________________________________________________ 
 

In equation 209, a weir coefficient Cw can be defined as gCC dw 2
3

2
 .  And for H/P 

< 0.4, the discharge coefficient is approximately Cd = 0.62; thus, the equation can be re-
written as:  
 
 

2/332.3 HLQ  , Q(cfs), L(ft), H(ft)                    [Eq.  212] 

or 
 

2/383.1 HLQ  , Q(m3/s), L(m), H(m)                   [Eq.  213] 
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________________________________________________________________________ 
Example 93 – Discharge over a suppressed rectangular weir 
A suppressed rectangular weir is located in a 4-ft wide rectangular open channel.   If the 
weir is 1.0 ft high and the head measured upstream of the weir is H = 0.25 ft, determine 
the discharge over the weir using the formula for H/P<0.4.    
 

cfsHLQ 66.1)25.0(0.432.332.3 2/32/3   
________________________________________________________________________ 
 
 
For a contracted sharp-crested weir, the equation to calculate the discharge is the Francis 
formula: 
 

2/3)1.0( HHnLCQ w                               [Eq.  214] 

 
The value of  n is either “1” or “2”, depending on whether the contractions occur on one 
or two sides, as illustrated below. 
 

 
Figure 82.  Contracted rectangular weir with n = 1 or n = 2 contractions. 

 
________________________________________________________________________ 
 
Example 94 – Discharge over a contracted weir 
A contracted weir of length L = 2 ft is set in a 3-ft wide rectangular open channel.  Using 
a weir coefficient Cw = 3.32, determine the discharge for a head H = 0.20 ft with (a) n = 
1 contraction, and (b) n = 2 contractions.   The weir height is P = 0.5 ft. 
 
The ratio H/P = 0.20ft/0.5ft = 0.4, and the discharge is  
 

(a)  cfsHHnLCQ w 588.02.0)2.011.02(32.3)1.0( 2/32/3 
 

(b)  cfsHHnLCQ w 582.02.0)2.021.02(32.3)1.0( 2/32/3 
________________________________________________________________________ 
 
Figure 83 below shows a contracted rectangular weir in a laboratory flume. 
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Figure 83.  Contracted weir in a laboratory flume. 
 
A special type of a contracted weir is the Cipoletti weir consisting of a trapezoidal shape 
with side slopes 1H: 4V as shown below.   
 

 
Figure 84.  Cipoletti weir schematic. 

 
The equation for the discharge over a Cipoletti weir is given by: 
 

)(),(),(,367.3 2/3 ftHftLcfsQHLQ                       [Eq.  215] 
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Where L = Lb + H/2, and Lb is the bottom or crest length of the Cipoletti weir. 
________________________________________________________________________ 
Example 95 – Discharge over a Cipoletti weir 
Determine the discharge over a Cipoletti weir if the weir length is L = 1.5 ft, and the head 
is H = 0.5 ft. 
 
The discharge is            .79.15.05.1367.3367.3 2/32/3 cfsHLQ 
________________________________________________________________________ 

 
A triangular, or v-notch weir consists of a symmetric v-shaped notch in a thin wall placed 
across an open channel.  A v-notch weir is used to measure low flows of less than 10 cfs.  
A schematic of a triangular (or v-notch) weir is shown below. 

 
 

Figure 85. Schematic of a triangular or v-notch weir. 
 

.  Figure 86 below shows a small triangular weir in a laboratory flume. 
 

 
 

Figure 86.  V-notch, or triangular, weir in a laboratory flume. 
 

The discharge for a triangular (or v-notch) weir is given by:  
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                             [Eq.  216] 

 
Where Cd is a discharge coefficient, g is the acceleration of gravity (g = 9.806 m/s2 = 
32.2 ft/s2), and  is the angle of the v-notch.  A typical value of the contraction coefficient 
is Cd = 0.58. 
________________________________________________________________________ 
Example 96 – Discharge over a triangular weir 

Determine the discharge over a v-notch weir if the weir angle is  = 80o and the head is H 
= 0.55 ft.  Use a discharge coefficient Cd = 0.58. 
 
The discharge is:            
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cfsQ 467.0  
________________________________________________________________________ 
 
 

0342.4 Broad-crested Weirs 

A broad-crested weir consists of an obstacle of height P placed in a rectangular open 
channel, as illustrated below.   The flow over the broad crested weir becomes critical, so 
that the depth at that point is the critical depth yc. 
 

 
 

Figure 87.  Schematic of flow over a broad-crested weir. 
 
In a rectangular channel of width L, the discharge over the broad-crested weir is: 
 

3
cygLQ                                                       [Eq.  217] 

 
If E represents the specific energy available over the weir, the critical depth can be 

expressed as yc = E
3

2
, and the discharge is written as: 
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
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                                  [Eq.  218] 

 
Expressing this equation in the form of a suppressed weir equation (equation 209), the 
discharge coefficient is given by:  
 

2/3

3

1








H

E
Cd                                                  [Eq.  219] 

 
Where H is the head measured upstream of the broad-crested weir, where the flow depth 
is y = P+H and the flow velocity is Vo.  For a large value of H, Vo is small, and E 
becomes similar to H, i.e., E/H becomes 1.0 which provides a minimum value for the 

discharge coefficient, (Cd )min = 
3

1
= 0.577.   As the velocity Vo increases, the value of 

E/H becomes larger than 1, and the discharge coefficient (equation 219) becomes larger 
than 0.577.   
 
If the critical depth can be measured over the weir, equation 217 provides the discharge.  
If the head H is measured use equation 209, instead, with a discharge coefficient larger 
than or equal to 0.577.  These are the equations used to evaluate many of the long-
throated flume types discussed in section 0342.6.1. 
 
________________________________________________________________________ 
Example 97– Discharge over a broad-crested weir- critical depth measured 
Determine the discharge over a broad-crested weir if the critical depth of flow over the 
weir is measured to be yc = 0.52 ft.   The channel has a width L = 2.5 ft. 
 
The discharge is:            
 

cfsftsftftygLQ c 32.5)52.0(/2.325.2 323   

________________________________________________________________________ 
Example 98 – Discharge over a broad-crested weir – head measured 
Determine the discharge over a broad-crested weir if the head measured upstream of the 
weir is measured to be H = 0.65 ft.  The channel has a width L = 3.5 ft.  Use a discharge 
coefficient Cd = 0.61. 
 
The discharge is (equation 209):            
 

cfsftftsftHLgCQ d 99.5)65.0(5.3/2.322
3

2
61.02

3

2 2/322/3   

________________________________________________________________________ 
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Most hydraulic structures in natural resource conservation work incorporate broad-
crested weirs, where their function is the control of flood flows.  The crest is horizontal 
and long in the direction of flow so that the water lays on the crest rather than springing 
free as water does flowing over a sharp-crested weir.  Roadways over bridges and 
culverts may be considered broad-crested weirs to estimate overtopping flows.  These 
discharges are generally calculated with equation 209, where a weir coefficient, Cw, can 

be defined as gCC dw 2
3


2
.  Cw ranges in value from 2.5 to 3.1.   

0342.5 Submerged Weir Flow 

Conditions downstream of a sharp-crested weir may produce submergence of the weir as 
illustrated.   The equation used to calculate the discharge is the same as equation 212, 
modified by a submergence coefficient Cs, and replacing H with the upstream head Hu.    
The resulting equation is: 
 

2/332.3 us HLCQ                                   [Eq.  220] 

 

 
Figure 88.  Submerged weir flow. 

 
The submergence coefficient is based on empirical data, as shown in Figure 89.  A 
polynomial fitting of this empirical data gives the following equation for the coefficient 
of submergence as: 
 

3319.1165.18395.5159.62152.28
234






































u

d

u

d

u

d

u

d
s H

H

H

H

H

H

H

H
C    

[Eq.  221]   
 
for 0.38 < Hd/Hu < 1.0, or Cs = 1.0, for Hd/Hu < 0.38. 
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Figure 89.  Coefficient of submergence for sharp crested weirs. 
 

________________________________________________________________________ 
Example 99 - Discharge over a submerged sharp-crested weir 
A sharp crested weir is operating under submerged conditions with upstream and 
downstream heads of Hu = 0.40 ft and Hd = 0.25 ft.   If the weir has a length L = 3.5 ft, 
determine the discharge Q over the weir. 
 
The submergence ratio Hd/Hu = 0.25 ft/0.40 ft = 0.625, and the submergence coefficient 
is calculated as: 
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        3319.1625.0165.18625.0395.51625.059.62625.0152.28 234 sC  = 

 
Cs = 0.93 

 
With this coefficient, the discharge is calculated as: 
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cfsHLCQ us 73.240.05.393.032.332.3 2/32/3   

________________________________________________________________________ 
 
Submergence affects broad-crested weirs less than sharp-crested weirs.  For broad-
crested weirs, discharge begins to be reduced at 80% submergence; at 90% submergence, 
discharge is still greater than 90% of unsubmerged discharge, USACOE (2008). 

 

0342.6 Flumes  

Flumes are shaped, open channel flow sections that force flow to accelerate and pass 
through critical depth in the flume.  When flow passes through critical depth, a unique 
water surface profile occurs within the flume for each discharge.  Flow acceleration is 
produced by converging the sidewalls, raising the bottom, or a combination of both.    
Flumes range in size from 1- inch to over 50 ft wide, and are installed in ditches, laterals, 
and large canals to measure flow. 
 
0342.6.1 Long-throated Flumes  
Long-throated flumes are coming into general use because they can be easily fitted into 
channel shapes.  When the flume’s bottom is a raised overflow crest, with no side 
contractions, the flume is commonly called a broad-crested weir.  Characteristics of long-
throated flumes include: 
 

1. Can have nearly any desired cross-sectional shape, 
2. Can be made into portable devices, 
3. Have few problems with floating debris and sediment, 
4. May be designed and calibrated by computer techniques; WinFlume design 

software and additional information can be downloaded at: 
 
http://www.wsi.nrcs.usda.gov/products/W2Q/water_mgt/Irrigation/irrig-mgt-models.html 

 
5. And, generally have measurement errors less than +2%. 
 

0342.6.2 Parshall Flumes 
Parshall flumes are used to measure water flow by custom or by law in some locales.  
The Parshall flume is an open-channel measurement structure that combines a contraction 
of the channel width with a drop in the channel bed.   Both transitions contribute to the 
establishment of critical flow, thus providing a unique relationship between the flow 
depth and discharge through the flume.   Parshall flumes are calibrated empirically, using 
other more precise and accurate water-measuring systems.   Since the flumes are 
calibrated empirically, care must be taken to build Parshall flumes according to the 
design dimensions.  If ha represents the water depth at the Parshall flume’s throat in ft, 
the discharge through the flume Q in cfs, can be calculated using the formula: 
 

Q = C ha
n,                                        [Eq.  222] 
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Where the coefficient C and the exponent n are given as functions of the flume’s width.   
Coefficients and exponents are given in tables found in the Water Measurement Manual. 
 
________________________________________________________________________ 
Example 100 – Discharge through a Parshall flume 
 
For a flume of width 5 ft, and depth, ha = 1.2 ft, determine the discharge through the 
flume. 
 
From the Water Measurement Manual, C = 20 and n = 1.59.  The resulting discharge is: 
 

Q = C ha
n = 20×1.21.59 

 = 26.73 cfs. 
 

________________________________________________________________________ 
 

Other flumes have been designed for special uses, such as for measurement of flows 
containing large amounts of sediment. See the Water Measurement Manual for 
discussion of special-type flumes. 
 
 
0370 Hydraulic Modeling 
Hydraulic modeling is the practice of testing small-scale hydraulic systems (the model) in 
the laboratory and translating the favorable results to equivalent quantities of the full-
scale system (the prototype).  Hydraulic modeling should be performed if sound design 
and dependable operation of the prototype cannot be accomplished with other recognized 
methods of analyses. The practice of hydraulic modeling is based on ensuring similarity 
between model and prototype. 
 
0371 Similarity between Models and Prototypes 
The figure below illustrates the concept of prototypes and models.  A prototype is the 
full-scale hydraulic system of interest, and is represented by the spillway on the left-hand 
side.  A model is a small-scale reproduction of the prototype, as illustrated on the right-
hand side of the figure. 

 
Figure 90. Prototype and model quantities. 
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The following figure shows the prototype and the model of a spillway flow.   
 

 
 

Figure 91. Prototype and model of an ogee spillway (courtesy of the Utah Water Research 
Laboratory, Utah State University). 

 
By building the model to resemble the shape of the prototype we ensure geometric 
similarity, as illustrated by the photographs of Figure 91.  Referring to quantities in the 
model with the subscript m and those in the prototype with the subscript p, the ratio of 
corresponding lengths in model and prototype is referred to as the length ratio, Lr: 
 

p

m
r L

L
L                                               [Eq.  223] 

 
Since area is calculated as the product of two lengths, the area ratio is defined as:  
 

2
r

p

m
r L

A

A
A                                            [Eq.  224] 

 
The volume ratio is, consequently, defined as:  
 

3

)(

)(
)( r

p

m
r L

Vol

Vol
Vol                                        [Eq.  225] 

 
________________________________________________________________________ 
Example 101 – Geometric similarity calculations 
A spillway that is 24 ft high (Hp = 24 ft) is to be built at a dam.  To check the hydraulic 
characteristics of the spillway a model with a length ratio Lr = 1/10 is to be built in the 
laboratory.   (a) What would be the height of the model, Hm?  (b) If the flow cross-section 
in the model will have an area Am = 1.2 ft2, what would be the equivalent area in the 

 196



EFH Chapter 3 Hydraulics                                                                           August 2009             

prototype?  (c) If the volume of water over the prototype is estimated to be (Vol)p = 480 
ft3, what is the estimated volume of water over the model, (Vol)m? 
 
(a) The model height is:  
 

Hm = LrHp = (1/10)24 ft = 2.4 ft 
 
(b) The prototype area is: 
 

Ap = Am/Ar = Am/Lr
2 = 1.2 ft2/(1/10)2 = 120 ft2 

 
(c) The model volume is:  
 

(Vol)m = (Vol)r(Vol)p = Lr
3(Vol)p = (1/10)3480 ft3 = 0.48 ft3 

 
________________________________________________________________________ 
 
 
0372 Hydraulic Modeling of Enclosed Flows (Pipelines) 
Enclosed flow models generally require that the Reynolds number, Re, of the model 
equals the Re of the prototype i.e. the Re ratio equals 1. 
 
Using Reynolds number similarity, the velocity, time, and discharge ratios are:  

r

r
r L

V


                                                 [Eq.  226] 
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                                          [Eq.  227] 
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LVAQ 


 2                             [Eq.  228] 

Where the kinematic viscosity ratio, r, is the model kinematic viscosity divided by the 
prototype kinematic viscosity.  
________________________________________________________________________ 
Example 102 – Control valve model calculation (pressurized flow) 
A model of a control valve for a water pipeline is to be tested in the laboratory.  The 
prototype valve has a diameter Dp = 4.0 ft, while the model will have a diameter Dm = 
0.5 ft.   If the model is tested using air, determine the velocity, time, and discharge ratios.  
The kinematic viscosities to use are m =air =1.5810-4 ft2/s, and p = water = 1.2210-

5 ft2/s. 
 
The length ratio is:  

Lr = Dm/Dp = 0.5 ft/4.0 ft = 1/8 
 
While the kinematic viscosity ratio is:  
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r = m/p = 1.5810 -4 ft2/s/ 1.2210 -5 ft2/s =12.95 

 
The velocity, time, and discharge ratios are: 
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rrr LQ   = (1/8)12.95 = 1.62 
________________________________________________________________________ 
 
0373 Hydraulic Modeling in Open-Channel Flow 
Open-channel or free-surface models generally require that the Froude number, Fr, of the 
model equals the Fr of the prototype i.e. the Fr ratio equals 1.   
 
Using Froude number similarity, the velocity, time, and discharge ratios are:  
 

Vr = Lr
1/2                                               [Eq.  229] 
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2/52/12

rrrrrr LLLVAQ                              [Eq.  231] 

 
 
________________________________________________________________________ 
Example 103 – Stilling basin model calculation (free-surface flow) 
A model of a stilling basin is built at a length ratio Lr = 1/20.  Using Froude similarity, 
what are the velocity, time, and discharge ratios?  If the length of the prototype basin is 
designed to be 40 ft, what is the model dimension? If the discharge of prototype is 2000 
cfs, what is the flow required for the model? 
 
Using Froude number similarity, the velocity, time, and discharge ratios are: 

 
 

2236.020/12/1  rrr LTV . 
 
 

2/52/12
rrrrrr LLLVAQ   = (1/20)5/2 = 0.000559 
 
 

 198



EFH Chapter 3 Hydraulics                                                                           August 2009             

Given the prototype basin length Lp = 40 ft, then the model basin length is: 
 
 

Lm = Lr Lp = (1/20) × 40 ft = 2 ft 
 
 
Finally, given the prototype discharge Qp = 2000 cfs, then the model discharge is: 
 
 

Qm = Qr Qp = 0.000559×2000 cfs = 1.12 cfs 
________________________________________________________________________ 
 
An important issue in modeling open channel flow is producing the proper scaling of the 
surface roughness of channel lining.  For example, bed roughness in streams and 
hydraulic structures may be provided by large, stable, rock lining known as riprap.  
Riprap model studies can be conducted to ensure geometric similarity.  However, density 
differences between the riprap model material and water need to be taken into account if 
buoyancy effects are to be simulated.  Figure 92 illustrates the use of smaller rock (of like 
density) to simulate the larger rock in a drop structure. 
 
 
 

 
 

Figure 92. Riprap hydraulic model (source: USDA - ARS) 
 
 
0374 Limitations of Models 
The maximum size of hydraulic models is limited by laboratory physical installations 
(e.g., space, pumping capacity) and the minimum size of models is limited by the 
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similarity laws.  For example, if the model size in an open channel model that follows 
Froude similarity is too small, viscous effects may become significant.  Viscosity may 
produce undesirable effects in such a model that are not properly scalable to the 
prototype.  Also, if the resulting open-channel model is too shallow, surface tension 
effects (such as capillarity waves) may appear that would not otherwise be relevant to the 
prototype performance.  In the case of distorted open-channel models (such as for wide, 
shallow streams), if the vertical model size is much larger than the horizontal size, the 
resulting flow may include secondary velocity components much larger than the 
prototype flow.  The resulting flow field then would be too distorted to be scaled up to 
the prototype size.   For a detailed discussion on model limitations and similarity laws 
please refer to Kobus (1980). 
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 202

Exhibit 1 – Dimensions and units of measurement 
 
The following table (Table E1.1) shows the dimensions of a variety of physical quantities 
in terms of the basic units mass, length, time (M,L,T) or force, length, time (F,L,T).  The 
table also shows the preferred units for those quantities in both the International System 
(S.I.) and the English System (E.S.) of units.  Additional units commonly used for the 
quantities listed are shown in the last column of the table. 
 

Table E1.1 – Dimensions and units of measurement 
 

         Dimensions      Preferred units Other  
Quantity (M,L,T) (F,L,T) S.I. E.S. units 
Length (L) L L m ft in, mi 
Time (T) T T s  s h, d, min 

Mass (M) M FT2L -1 kg slug  

Area (A) L2 L2 m2 ft2 Ac 

Volume (Vol) L3 L3 m3 ft3 Ac-ft 

Velocity (V) LT -1 LT -1 m/s ft/s or fps -- 

Acceleration (a) LT -2 LT -2 m/s2 ft/s2 -- 

Discharge (Q) L3T -1 L3T -1 m3/s ft3/s or cfs -- 

Kinematic viscosity () L2T -1 L2T -1 m2/s ft2/s St 

Force (F) MLT -2 F N lb -- 

Pressure (p) ML -1T -2 FL -2 Pa lb/ft2  psi, atm 

Shear stress () ML -1T -2 FL -2 Pa lb/ft2  psi  

Density () ML -3 FT2L -4 kg/m3 slug/ft3 -- 

Specific weight () ML-2T -2 FL -3 N/m3 lb/ft3 -- 

Energy/Work/Heat (E) ML2T -2 FL J lb ft -- 

Power (P) ML2T -3 FLT -1 W lb ft/s hp 

Dynamic viscosity () ML -1T -1 FTL -2 N s/m2 lb s/ft2 P 
 
 
The units used in Table E1-1 are defined as follows: 
 
Ac : acre, a unit of area 
Ac-ft : acre  feet  
atm : atmosphere  
cfs : cubic feet per second 
fps : feet per second 
ft : foot or feet 
hp : horse power  
in : inch 
J : joule 
kg : kilogram 
lb : pound 
m : meter 
N : newton 

mi : mile 
P : poise  
Pa : Pascal 
psi : pounds per square inch  
s : second 
St : stokes  
W : watt 
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Exhibit 2 – Selected conversion factors for units of measurement 

 
The following tables (Tables E2.1 and E2.2) show a number of selected conversion 
factors for units of measurement in both the English System (E.S.) and the International 
System (S.I.).  The conversion factors are grouped by dimensions.  The units are defined 
as follows: 
 
Ac : a unit of area 
atm : atmosphere (unit of pressure) 
bar : bar (unit of pressure) 
Btu  : British thermal unit (unit of 

work, energy, or heat) 
cal : calorie (work, energy, or heat) 
cm : centimeter (1/100 of a meter) 
cP : centipoise (1/100 of a poise) 
cSt : centistoke (1/100 of a stoke) 
d : day 
dyn : dyne = gcm/s2 (unit of force) 
ft : foot or feet 
ftH20 : feet of water (unit of pressure) 
g : gram (unit of mass) 
gal : gallon (unit of volume) 
h : hour 
ha : hectare (an S.I. unit of area) 
hp : horse power (unit of power) 
in : inch 
inH20 : inches of water (pressure) 
inHg : inches of mercury (pressure) 
J : Joule (work, energy, or heat) 
K : Kelvin (absolute temperature) 
kcal : kilocalorie (1000 calories, heat) 
kg : kilogram (1000 grams, mass) 
kip : kip (1000 lb, force) 
km : kilometer (1000 meters) 
kN : kilonewton (1000 newtons) 
kPa : kilopascal (1000 Pascals) 
kph : kilometers per hour 
kW : kilowatt (1000 watts, power) 
kWh : kilowatt-hour (work, energy, or  

heat) 
l : liter (unit of volume) 
lb : pound (unit of force) 
m : meter 
mH2O : meters of water (pressure) 
mi : mile 

min : minute 
ml : milliliter (1/1000 of a liter) 
mm : millimeter  (1/1000 of a meter) 
mmHg : millimeters of mercury (press.) 
mph : miles per hour 
N : newton (unit of force) 
o : degree for angular measurement 
oC : Centigrade degree (temp.) 
oF : Fahrenheit degree (temp.) 
oR : Rankine degree (absolute temp)  
oz : ounce (1/16 pound, force) 
P : poise (dynamic viscosity) 
Pa : Pascal (unit of pressure) 
psf : pounds per square foot (lb/ft2, 

pressure) 
psi : pounds per square inch (lb/in2, 

pressure) 
r : radian (dimensionless, angle) 
s : second 
slug : slug unit of mass = lbs2/ft 
St : stokes (kinematic viscosity) 
W : watt (unit of power) 
yd : yard  
yr : year 
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Table E2.1 – Selected conversion factors for units of measurement – part 1 
 

DIMENSIONS                           BASIC CONVERSION FACTORS 
LENGTH 1 ft = 0.3048 m 1 m = 3.2808 ft 
MASS 1 slug = 14.5939 kg 1 kg = 0.0685 slug 
FORCE 1 lb = 4.4482 N 1 N = 0.2248 lb 
TIME (same basic units) 1 s = 1 s 

ABSOLUTE TEMP. 1 oR = 5/9 K 1 K = 9/5 oR 
DIMENSIONS                     OTHER CONVERSION FACTORS 
LENGTH 1 ft = 0.3048 m 1 m = 3.2808 ft 
  1 ft = 30.48 cm 1 cm = 0.0328 ft 
  1 in = 2.54 cm 1 cm = 0.3937 in 
  1 mi = 1.609 km 1 km = 0.6214 mi 

AREA 1 ft2 = 0.0929 m2 1 m2 = 10.7639 ft2 

  1 ha = 104 m2  1 Ac = 43560.1742 ft2  
  1 ha = 2.4710 Ac 1 Ac = 0.4047 ha 

  1 in2 = 6.4516 cm2 1 cm2 = 0.1550 in2 

VOLUME 1 ft3 = 0.0283 m3 1 m3 = 35.3147 ft3 

  1 in3 = 16.3871 cm3 1 cm3 = 0.0610 in3 

  1 ft3 = 28.3168 l 1 l = 0.0353 ft3 

  1 ft3 = 7.4805 gal 1 gal = 0.1337 ft3 

  1 l = 1000 cm3 1 l = 0.001 m3 

  1 Acft = 43560.1742 ft3 1 ft3 = 2.2957 10-5 Acft 
VELOCITY 1 ft/s = 0.3048 m/s 1 m/s = 3.2808 ft/s 
  1 mph = 0.4470 m/s 1 m/s = 2.2369 mph 
  1 mph = 1.6093 kph 1 kph = 0.6214 mph 

ACCELERATION          acceleration of gravity, g = 32.174 ft/s2 = 9.8067 m/s2 

  1 ft/s2 = 0.3048 m/s2 1 m/s2 = 3.2808 ft/s2 

DISCHARGE 1 ft3/s = 0.0283 m3/s 1 m3/s = 35.3147 ft3/s 

  1 ft3/s = 7.4805 gal/s 1 m3/s = 264.1720 gal/s 

  1 ft3/s = 448.8312 gal/min 1 m3/s = 15850.3231 gal/m 

  1 ft3/s = 28.3168 l/s 1 m3/s = 1000 l/s 

  1 l/s = 15.8503 gal/min 1 l/s = 0.001 m3/s 
MASS 1 slug = 14.5939 kg 1 kg = 0.0685 slug 
  1 slug = 14593.9029 g 1 kg = 1000 g 
  1 g = slug 1 g = 0.001 kg 
FORCE 1 lb = 4.4482 N 1 N = 0.2248 lb 

  1 lb = 16 oz 1 N = 105 dyn 
  1 lb = 0.001 kip 1 N = 0.0002 kips 

  1 kip = 1000 lb 1 dyn = 2.2480×10-6 lb 
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Table E2.2 – Selected conversion factors for units of measurement – part 2 

 
DIMENSIONS                     OTHER CONVERSION FACTORS (continued) 
ENERGY 1 ft-lb = 1.3558 J 1 J = 0.7376 ft-lb 
WORK 1 ft-lb = 0.0013 Btu 1 J = 0.0009 Btu  
HEAT 1 ft-lb = 0.3238 cal 1 kWh = 3600000 J 
TORQUE 1 Btu = 778.1693 ft-lb  1 kWh = 3412.1416 Btu 

  1 Btu = 251.9958 cal 1 J = 107 ergs 
  1 Btu = 1055.0559 J 1 J = 0.2388 cal 
POWER 1 ft-lb/s = 1.3558 W 1 W = 0.7376 ft-lb/s 
  1 hp = 550 ft-lb/s 1 kW = 737.5621 ft-lb/s 
  1 hp = 745.6999 W   

PRESSURE 1 atm = 2116.2166 psf  1 bar = 105 Pa = 14.5038 psi 

SHEAR STRESS 1 psf = 0.0069 psi 1 kPa = 103 Pa = 0.1450 psi 
  1 psf = 47.8803 Pa 1 ftH20 = 0.4331 psi 
  1 mmHg = 0.0193 psi 1 inH20 = 0.0361 psi 
  1 inHg = 0.4912 psi 1 mH20 = 0.9102 kPa 

DENSITY 1 slug/ft3 = 515.3788 kg/m3 1 kg/m3 = 0.0019 slug/ft3 

  1 slug/ft3 = 0.5154 g/cm3 1 g/cm3 = 1.9403 slug/ft3 

  1 kg/m3 = 0.001 g/cm3 1 g/cm3 = 1000 kg/m3 

SPECIFIC WEIGHT 1 lb/ft3 = 157.0875 N/m3 1 N/m3 = 0.0064 lb/ft3 

  1 kip/ft3 = 157087.4638 N/m3 1 N/m3 = 0.1 dyn/cm3 

  1 lb/ft3 = 15.7087 dyn/cm3 1 N/m3 = 6.3658×10-6 kip/ft3 
KINEMATIC 
VISCOSITY 1 ft2/s = 0.0929 m2/s 1 m2/s = 10.7639 ft2/s 

  1 ft2/s = 929.0304 St 1 St = 0.001 ft2/s 

  1 St = 0.0001m2/s 1 m2/s = 10000 St 

DYNAMIC VISCOSITY 1 lbs/ft2 = 47.8803 Ns/m2 1 Ns/m2 = 0.0209 lbs/ft2 

  1 lbs/ft2 = 478.8026 P 1 P = 0.0021 lbs/ft2 

  1 P = 0.1 Ns/m2 1 Ns/m2 = 10 P 

TEMPERATURE 1 oR = 5/9 K 1 K = 9/5 oR 

  oR = oF + 459.67 K = oC + 273.15 

  oF = 9/5 oC + 32 oC = 5/9 (oF - 32) 
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Exhibit 3 – The Greek alphabet 
 
The following table (Table E3.1) shows the letters of the Greek alphabet in their lower 
case and upper case forms, their name, and their closest English equivalent. 
 

Table E3.1 – The Greek Alphabet 
 

Lower Upper Letter English   Lower Upper Letter English 
case case name equivalent   case case name equivalent
  Alpha  a    Nu  n 
  Beta  b    Xi  x 
  Gamma  g    Omicron  o 
  Delta  d    Pi  p 
  Epsilon  e    Rho  r 
  Zeta  z    Sigma  s 
  Eta  h    Tau  t 
  Theta  th    Upsilon  u 
  Iota  i    Phi  ph 
  Kappa  k    Chi  ch 
  Lambda  l    Psi  ps 
  Mu  m     Omega  o 

 
Many of the letters of the Greek alphabet are used as symbols for variables used in 
hydraulics equations.  Some common examples are: 
 

 (rho)  Density 
  (omega) Specific weight (some references use  for specific weight) 
  (mu)  Dynamic viscosity 
  (nu)  Kinematic viscosity 
  (tau)  Shear stress 
 (epsilon) Absolute roughness in pipes 
  (pi)  Ratio of length of circle to its diameter, constant value:   3.1416 


In reference to angular measurements, the letters  (alpha),  (beta),  (gamma), and  
(theta) are commonly used.   
 
The letter  (upper-case delta) is typically used to indicate an increment of a quantity, 
thus, h may represent, for example, an increment on a depth h. 
 
The letter  (epsilon) is typically used to indicate a very small quantity in solution of 
equations. 
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Exhibit 4 – Physical properties of water 
 
The following tables (Table E4.1 and E4.2) show values of the following physical 
properties of water at different temperatures: 
 

 Density 
 Specific weight 
 Kinematic viscosity 
 Dynamic viscosity  
 Vapor pressure 
 Bulk modulus of elasticity 

 
Table E4.1 shows the properties of water in units of the English System (E.S.), while 
Table E4.2 shows the same properties in units of the International System (S.I.). 
 

Table E4.1 – Physical properties of water in E.S. units 
 

            Bulk 
 Density Specific Kinematic Dynamic Vapor Modulus of 

Temp.  weight,  viscosity,  viscosity,  pressure, pv Elasticity, E 
oF slug/ft3 lb/ft3 ft2/s lbs/ft2 psi-abs psi 

32 1.940 62.42 1.93110-5 3.74610-5 0.09 2.93105 

40 1.940 62.43 1.66410-5 3.22910-5 0.12 2.94105 

50 1.940 62.41 1.41010-5 2.73510-5 0.18 3.05105 

60 1.938 62.37 1.21710-5 2.35910-5 0.26 3.11105 

70 1.936 62.30 1.05910-5 2.05010-5 0.36 3.20105 

80 1.934 62.22 9.30010-6 1.79910-5 0.51 3.22105 

90 1.931 62.11 8.26010-6 1.59510-5 0.70 3.23105 

100 1.927 62.00 7.39010-6 1.42410-5 0.95 3.27105 

110 1.923 61.86 6.67010-6 1.28410-5 1.27 3.31105 

120 1.918 61.71 6.09010-6 1.16810-5 1.69 3.33105 

130 1.913 61.55 5.58010-6 1.06910-5 2.22 3.34105 

140 1.908 61.38 5.14010-6 9.81010-6 2.89 3.30105 

150 1.902 61.20 4.76010-6 9.05010-6 3.72 3.28105 

160 1.896 61.00 4.42010-6 8.38010-6 4.74 3.26105 

170 1.890 60.80 4.13010-6 7.80010-6 5.99 3.22105 

180 1.883 60.58 3.85010-6 7.26010-6 7.51 3.18105 

190 1.876 60.36 3.62010-6 6.78010-6 9.34 3.13105 

200 1.868 60.12 3.41010-6 6.37010-6 11.52 3.08105 

212 1.860 59.83 3.19010-6 5.93010-6 14.70 3.00105 
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Table E4.2 – Physical properties of water in S.I. units 

 
            Bulk 
 Density Specific Kinematic Dynamic Vapor Modulus of 

Temp.  weight,  viscosity,  viscosity,  pressure, pv Elasticity, E 
oC kg/m3 kN/m3 m2/s Ns/m2 kPa-abs kPa 

0 999.8 9.805 1.78510-6 1.78110-3 0.61 2.02106 

5 1000.0 9.807 1.51910-6 1.51810-3 0.87 2.06106 

10 999.7 9.804 1.30610-6 1.30710-3 1.23 2.10106 

15 999.1 9.798 1.13910-6 1.13910-3 1.70 2.15106 

20 998.1 9.789 1.00010-6 1.00210-3 2.34 2.18106 

25 997.0 9.777 8.93010-7 8.90010-4 3.17 2.22106 

30 995.7 9.764 8.00010-7 7.98010-4 4.24 2.25106 

35 994.0 9.747 7.29010-7 7.30010-4 5.81 2.27106 

40 992.2 9.730 6.58010-7 6.53010-4 7.38 2.28106 

45 990.1 9.710 6.05510-7 6.00010-4 9.86 2.29106 

50 988.0 9.689 5.53010-7 5.53010-4 12.33 2.29106 

55 985.6 9.666 5.13510-7 5.13510-4 16.13 2.29106 

60 983.2 9.642 4.74010-7 4.74010-4 19.92 2.28106 

65 980.5 9.620 4.43510-7 4.43510-4 25.54 2.27106 

70 977.8 9.589 4.13010-7 4.13010-4 31.16 2.25106 

75 974.8 9.560 3.88510-7 3.88510-4 39.25 2.23106 

80 971.8 9.530 3.64010-7 3.64010-4 47.34 2.20106 

85 968.6 9.498 3.39510-7 3.39510-4 58.75 2.17106 

90 965.3 9.466 3.15010-7 3.15010-4 70.10 2.14106 

95 961.9 9.433 3.04510-7 2.99010-4 85.72 2.11106 

100 958.4 9.399 2.94010-7 2.82010-4 101.33 2.07106 
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Exhibit 5 – Variation of atmospheric pressure with elevation 
 
The following table shows the variation of atmospheric pressure with elevation.  
 

English System International System 
Elevation Atmospheric Elevation Atmospheric
above pressure above pressure 

sea level patm sea level patm

(ft) (psia) (m) (kPa)
0 14.69 0 101.32

1000 14.18 300 97.78
2000 13.67 600 94.34
3000 13.18 900 90.98
4000 12.70 1200 87.73
5000 12.23 1500 84.56
6000 11.78 1800 81.49
7000 11.34 2100 78.51
8000 10.92 2400 75.62
9000 10.50 2700 72.83

10000 10.10 3000 70.12
    Based on the ICAO (*) Standard Atmosphere 
     (*) International Civil Aviation Organization 

 
 
The tables are based on the following data fitting of the atmospheric pressure-vs-
elevation data: 
 

 Units of the English System: patm (psia) = atmospheric pressure, z (ft) = elevation 
 

patm = 14.69 – 0.000525 z+6.56310 -9 z2 
 

 Units of the International System: patm (kPa) = atmospheric pressure, z (m) = 
elevation 

 
patm = 101.32 – 0.01195 z+5.17210 -7 z2 
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Exhibit 6 - Pipe-system analysis for pump selection 
 

This example illustrates the use of manufacturer-provided pump curves in pump 
selection.  The following figure shows the pump curves provided by a manufacturer for a 
number of pumps whose sizes are specified in the Figure E6.1. 
 

 
Figure E6.1. Manufacturer-provided pump curves and pump sizes 

 
Suppose that the pump is to be installed in a system as that shown in the following figure.  
The parameters of the system are the following: L = 1000 ft, D = 2 in, e = 0.000005 ft, g 
= 32.2 ft/s2,  = 1.2010 -5 ft2/s, Ke = 0.5, Kd = 1.0, (i.e., K = 1.5), and z = 20 ft. 

 
Figure E6-2. Pump-pipeline system for analysis. 
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A numerical spreadsheet application was used to develop the system curve, which is the 
capacity and head needed for various operating conditions.  The tabular data for this 
example’s system curve are shown below: 
 

System hp (ft) Q (gpm) 
21 4 
30 22 
55 45 
93 67 
142 90 
275 135 
451 180 

The next step is to plot the system curve values of hp (ft) and Q(gpm) over the 
manufacturer’s pump curves, as shown in the figure below: 

 
Figure E6-3. System curve plotted against pump curves 

 
The points of intersection of the system curve with the pump curves are the operating 
points.   The three system operating points for the pumps using 2-inch diameter pipe are: 
 
Pump SP3010X15AZ,    Q = 59 gpm, hP = 80 ft 
Pump SP3015X20AZ,    Q = 64 gpm, hP = 88 ft 
Pumps SP3020X25AZ and SP3025X30AZ,   Q = 69 gpm, hP = 99 ft 
 
Generally, a pump should be selected with an operating point at 80 to 85% of the shut-off 
head (maximum head). 
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Exhibit 7 – Culvert flow solutions using nomograms 
 
This exhibit includes nomograms for the calculation of culvert flow for different pipe 
materials.  A nomogram is a graphical device used for solving equations.  In a 
nomogram, the user pinpoints the location of two points in the scales provided and traces 
a straight line to a third scale.  The intersection of the straight line with the third scale is 
the value of the unknown variable sought.  Some nomograms include additional scales 
corresponding to different conditions for the problem, as well as turning lines to relate the 
solution to a third variable. 
 
The four nomograms included in this exhibit are the same as charts in FHWA-NHI-01-
020, HYDRAULIC DESIGN OF HIGHWAY CULVERTS, Hydraulic Design Series No. 5, 
September 2001.  FHWA, HDS 5 contains 55 additional charts for hydraulic analyses of 
culverts of different types and flow conditions.   Examples are included for each of the 
nomograms in this exhibit. 
 
The culvert flow types for the four nomograms are illustrated in Figure 64, which is 
repeated below: 
 

 
Figure 64. Flow regimes for submerged inlet flow in culverts [repeated]. 

 
 
The four nomograms for this exhibit are described as follows: 
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 Figure E7-1. Nomogram for headwater depth for concrete pipe culverts with inlet 

control.  
 Figure E7-2. Nomogram for headwater depth for corrugated metal (CM) pipe 

culverts with inlet control.  
 Figure E7-3. Nomogram for concrete pipe culverts flowing full with outlet 

control, Manning’s n = 0.012.  
 Figure E7-4. Nomogram for head for corrugated metal (CM) pipe culverts 

flowing full with outlet control, n = 0.024.  
 

The variables referenced in these nomograms are described as follows: 
 

 D = culvert pipe diameter (in) 
   = Head water depth to culvert pipe diameter ratio (dimensionless) 

 Q = discharge (cfs) 
 L = culvert length (ft) 
 H or h = head (ft), the difference in elevation between the HW depth and 

downstream depth in a culvert 
 
Notice that variable h in Figure 64 is the same as variable H in the nomograms of 
Figures E7-3 and E7-4 in this exhibit. 
 
Example E7-1. Concrete pipe culvert with inlet control 
Consider a concrete pipe culvert with diameter D = 42 in = 3.5 ft, carrying a discharge Q 
= 120 cfs.  Determine the required head water depth (HW) for the following conditions: 
 
(1) Square edge with headwall; (2) Groove end with headwall; (3) Groove end projecting 
 
Using Figure E7-1, first locate D = 42 in on scale (4), then Q = 120 cfs on scale (3), and 
trace a straight  line through these two points and extend it up to scale (1).  The point of 
intersection of the EXAMPLE line with scale (1) corresponds to the value of HW/D = 2.5 
for a square edge with headwall.  To find the values of HW/D for the other cases (groove 
end with headwall and groove end projecting), draw a horizontal line from the point 
found in scale (1) to intersect scale (2) and scale (3), respectively.   The values read in 
scales (2) and (3) are HW/D = 2.1 and HW/D = 2.2, respectively.   The value of the 
corresponding headwater can be calculated multiplying the HW/D value by the pipe 
diameter D.  Thus, for the three cases required in this example, the following results are 
obtained: 
 

(1) Square edge with headwall,  HW/D = 2.5, D = 2.5 × 3.5 ft = 8.75 ft ≈  8.8 ft 
(2) Groove end with headwall, HW/D = 2.1, D = 2.1 × 3.5 ft = 7.35 ft ≈  7.4 ft 
(3) Groove end projecting, HW/D = 2.2, D = 2.2 × 3.5 ft = 6.6 ft    

 
The nomographs were computed assuming 2% culvert slopes, and are considered to be 
accurate within 10% for determining the required inlet control headwater. 
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Figure E7-1. Nomogram for headwater depth for concrete pipe culverts with inlet control.  
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Example E7-2. Corrugated metal (CM) pipe culvert with inlet control 
Consider a concrete pipe culvert with diameter D = 36 in = 3 ft, carrying a discharge Q = 
66 cfs.  Determine the required head water depth (HW) for the following conditions: 
 

(1) Headwall; (2) Mitered to conform to slope; (3) Projecting 
 
Using Figure E7-2, first locate D = 36 in on scale (4), then Q = 66 cfs on scale (3), and 
trace a straight  line through these two points and extend it up to scale (1).  The point of 
intersection of the EXAMPLE line with scale (1) corresponds to the value of HW/D = 1.8 
for a square edge with headwall.  To find the values of HW/D for the other cases (mitered 
to conform to slope and projecting), draw a horizontal line from the point found in scale 
(1) to intersect scale (2) and scale (3), respectively.   The values read in scales (2) and (3) 
are HW/D = 2.1 and HW/D = 2.2, respectively.   The value of the corresponding 
headwater can be calculated multiplying the HW/D value by the pipe diameter D.  Thus, 
for the three cases required in this example, the following results are obtained: 
 

(1) Headwall,    HW/D = 1.8, D = 1.8 × 3 ft = 5.4 ft 
(2) Mitered to conform to slope, HW/D = 2.1, D = 2.1 × 3 ft = 6.3 ft 
(3) Projecting,   HW/D = 2.2, D = 2.2 × 3 ft = 6.6 ft  

 
Example E7-3. Concrete pipe culvert flowing full with outlet control (n = 0.012) 
Determine the diameter of a concrete pipe culvert flowing full with a length L = 110 ft 
with an entrance loss coefficient ke = 0.5 if it is to carry a flow  Q = 70 cfs with a head 
loss H = 0.94 ft. 
 
Using Figure E7-3, first, trace a straight line from the DISCHARGE scale at point Q = 
70 cfs to the HEAD scale at H = 0.94.  Next, locate the point L = 110 ft on the LENGTH 
scale corresponding to ke = 0.5, and trace a straight line through the intersection of the 
first line with the TURNING LINE, extending it all the way to the DIAMETER scale.   
The ending point of this second line represents the predicted value for the diameter.  In 
this case, D = 48 in = 4 ft.  Since this value is a standard value for pipe diameters, this 
will be the design diameter.  On the other hand, if the diameter had been, say, D = 51 in, 
then, it is recommended to use the next larger standard diameter, D =54  in = 4.5 ft. 
 
Example E7-4. Corrugated metal (CM) pipe culvert flowing full with outlet control 
(n = 0.024) 
Determine the head loss H for a CM culvert with diameter D = 27 in and length L = 120 
ft if it is to carry a discharge Q = 35 cfs.  The entrance loss coefficient is ke = 0.9. 
 
Using Figure E7-4, first, trace a straight line from the DIAMETER scale at D = 27 in to 
the point L = 120 ft in the LENGTH scale corresponding to ke = 0.9.  Next, locate the 
point Q = 35 cfs in the DISCHARGE scale, and trace a straight line through the 
intersection of the first line with the TURNING LINE, extending all the way to the 
HEAD scale.  The end of this line will show the required value of, H = 0.75 ft. 
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Figure E7-2. Nomogram for headwater depth for corrugated metal (CM) pipe culverts 
with inlet control.  
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Figure E7-3. Nomogram for concrete pipe culverts flowing full with outlet control, 

Manning’s n = 0.012. 
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Figure E7-4. Nomogram for head for corrugated metal (CM) pipe culverts flowing full 
with outlet control, n = 0.024. 
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