### NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 21. DESIGN HYDROGRAPHS

Ъy

Victor Mockus Hydraulic Engineer

Revisions by

Vincent McKeever William Owen Robert Rallison Hydraulic Engineers

## 1965

Reprinted with minor revisions, 1972

-

NEH Notice 4-102, August 1972

### NATIONAL ENGINEERING HANDBOOK

### SECTION 4

### HYDROLOGY

### CHAPTER 21. DESIGN HYDROGRAPHS

### Contents

## Principal Spillways .... 21.1 Combination of channel loss, quick return flow, Construction of principal spillway hydrographs and Emergency Spillways .... 21.49 Duration adjustment of rainfall amount ..... 21.50 Construction of emergency spillway and freeboard

### Figures

### Figure

Page

•

Page

| 21 <b>.1</b> a | Quick return | flow con  | nbined w | vith pri | ncipal |     |     |      |
|----------------|--------------|-----------|----------|----------|--------|-----|-----|------|
|                | spillway hyd | rograph f | for the  | runoff   | volume | map |     |      |
|                | procedure .  |           | • • • •  |          |        |     | • • | 21.9 |

Figures

| Figure                       |                                           |          |       |        |          |               |     |             |             |     |             |     |    |     |     |        |     |    |             |             |             |             |   | rage                             |
|------------------------------|-------------------------------------------|----------|-------|--------|----------|---------------|-----|-------------|-------------|-----|-------------|-----|----|-----|-----|--------|-----|----|-------------|-------------|-------------|-------------|---|----------------------------------|
| 21.1<br>21.2<br>21.3<br>21.4 | Mass cur<br>ES-1003<br>ES-1011<br>ES-1012 | ves      |       | fr     | run      | nof<br>•<br>• | f   | •<br>•<br>• | •<br>•<br>• | •   | •<br>•<br>• |     |    |     |     |        |     |    | •<br>•<br>• | •<br>•<br>• | •<br>•<br>• | •<br>•<br>• | • | 21.48<br>21.81<br>21.83<br>21.85 |
| 21.5                         | ES-1020                                   |          | nt    | ıgı    | 101      | 15            | st  | at          | ces         | 3)  |             |     |    |     |     |        |     |    |             |             |             |             |   | 21 87                            |
|                              | Sneet 1                                   | OI       | 2     | •      | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.01                            |
|                              | Sneet 2                                   | OI<br>of | 2     | •      | •        | •             | •   | ٠           | •           | •   | •           | •   | •  | •   | ••• | •      | •   | •  | •           | •           | •           | •           | • | 21.80                            |
|                              | Sheet 3                                   | 01<br>6  | 2     | •      | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.00                            |
|                              | Sheet 5                                   | 01       | 2     | •      | •        | •'            | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21 01                            |
| 21 6                         |                                           | (u.      | 2     | • •    | <b>.</b> | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.71                            |
| 21.0                         | Shoot 1                                   |          | 1.140 | ·1 Τ . | /        |               |     |             |             |     |             |     |    |     |     |        |     |    |             |             |             |             |   | 21 03                            |
|                              | Sheet 2                                   | of       | 25    | •      | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.04                            |
|                              | Sheet 2                                   | of       | 5     | •      | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           |   | 21.95                            |
|                              | Sheet 1                                   | of       | 5     | • ·    | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   | •   |        |     |    |             |             |             |             |   | 21.96                            |
|                              | Sheet 5                                   | of       | 5     | •      | •        | •             | •   |             |             |     | :           |     | •  |     |     | ·      | ·   |    |             | Ż           |             |             |   | 21.97                            |
| 21.7                         | ES-1022                                   | (A1      | las   | ka     | )        | •             | •   | •           | ·           | ·   | •           | •   | •  | •   | •   | ·      | ·   | •  | •           | •           | •           | •           | • |                                  |
| ·                            | Sheet 1                                   | of       | 5     |        | <i>.</i> |               |     |             |             |     |             |     |    |     |     | •      |     |    |             |             |             |             |   | 21.99                            |
|                              | Sheet 2                                   | of       | 5     |        | Ż        |               |     |             |             |     |             |     | •  | •   |     |        |     |    | •           | •           |             |             |   | 21.100                           |
|                              | Sheet 3                                   | of       | ś     |        |          | •             |     | •           |             | •   |             |     |    |     |     |        |     |    |             |             |             |             |   | 21.101                           |
|                              | Sheet 4                                   | of       | 5     | •      |          | •             |     | •           |             | •   |             |     | •  |     |     |        |     |    | •           |             |             | •           |   | 21.102                           |
|                              | Sheet 5                                   | of       | 5     |        |          |               |     |             |             |     |             | •   | •  |     |     |        |     |    |             |             |             |             |   | 21.103                           |
| 21.8                         | ES-1023                                   | (Pı      | ler   | to     | R        | ied           | 5)  |             |             |     |             |     |    |     |     |        |     |    |             |             |             |             |   |                                  |
|                              | Sheet 1                                   | of       | 5     | •      |          |               | •   | •           |             |     |             | •   |    |     |     | •      |     |    | •           |             | •           |             | • | 21.105                           |
|                              | Sheet 2                                   | of       | 5     |        |          | •             | •   |             |             | •   |             |     | •  | ۰.  |     | •      | •   |    | •           |             |             |             | • | 21.106                           |
|                              | Sheet 3                                   | of       | 5     |        | •        |               |     |             |             | •   |             | •   | •  |     |     | •      | •   | •  |             | •           | •           | •           | • | 21.107                           |
|                              | Sheet 4                                   | of       | 5     |        |          | •             |     |             | •           |     |             | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           |   | 21.108                           |
|                              | Sheet 5                                   | of       | 5     |        |          | •             |     |             | •           | •   |             | •   | •  | •   | •   | ٠      | •   | •  | •           | •           | ٠           | •           | • | 21.109                           |
| 21.9                         | ES-1024                                   | (S†      | t.    | The    | oma      | as            | , ; | St          | • •         | Jol | hn,         | , ; | St | . 1 | Cro | )<br>i | x . | Is | Laı         | nds         | Б)          |             |   |                                  |
|                              | Sheet 1                                   | of       | 5     | •      | •        | •             | •   | •           | •           | •   |             | •   | ٠  |     |     | •      | •   | ٠  | •           | •           | ٠           | •           | • | 21.111                           |
|                              | Sheet 2                                   | of       | 5     | ٠      | •        | •             | •   | •           | •           | •   | •           | •   | •  | •   |     | •      | •   | •  | •           | ٠           | •           | •           | • | 21.112                           |
|                              | Sheet 3                                   | of       | 5     |        |          | •             | •   |             | •           | •   | •           | •   | •  | •   | •   | •      | •   |    | •           | •           | •           | •           |   | 21.113                           |
|                              | Sheet 4                                   | of       | 5     | •      | •        | •             | •   | •           | •           | •   |             | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.114                           |
|                              | Sheet 5                                   | of       | 5     | . •    | •        | •             | ٠   | •           | •           | ٠   | ٠           | •   | •  | •   | •   | •      | •   | •  | •           | •           | •           | •           | • | 21.115                           |
|                              |                                           |          |       |        |          |               |     |             |             |     |             |     |    |     |     |        |     |    |             |             |             |             |   |                                  |

# Tables

## Tables

Page

•

| 21.1 | Ratios for areal adjustment of rainfall amount | 21.3 |
|------|------------------------------------------------|------|
| 21.2 | Ten-day runoff curve numbers                   | 21.4 |
| 21.3 | Channel-loss factors for reduction of direct   |      |
|      | runoff                                         | 21.6 |
| 21.4 | Minimum quick return flow for PSH derived from |      |
|      | rainfall                                       | 21.7 |

Tables

| 21.5  | Arrangement of increments before construction of   |       |
|-------|----------------------------------------------------|-------|
| -     | PSH and PSMC                                       | 21.11 |
| 21.6  | PSH and PSMC for example 21.1                      | 21.14 |
| 21.7  | PSH and PSMC for example 21.2                      | 21.16 |
| 21.8  | PSH for example 21.3                               | 21.18 |
| 21.9  | Serial numbers of PSH and PSMC                     | 21.19 |
| 21.10 | Time, rate, and mass tabulation for principal      |       |
|       | spillway hydrographs (PSH) and mass curves (PSMC)  | 21.20 |
| 21.11 | Equations used in construction of ESH and FH       | 21.52 |
| 21.12 | Hydrograph computation                             | 21.54 |
| 21.13 | Hydrograph computation                             | 21.56 |
| 21.14 | Rainfall prior to excess rainfall                  | 21.57 |
| 21.15 | Rainfall and time ratios for determining To        |       |
|       | when storm duration is greater than 6 hours        | 21.58 |
| 21,16 | Hydrograph families and $T_0/T_p$ ratios for which |       |
|       | dimensionless hydrograph ratios are given in       |       |
|       | Table 21.17                                        | 21.59 |
| 21.17 | Time, discharge, and accumulated runoff ratios     |       |
|       | for dimensionless hydrographs                      | 21.60 |

## Exhibits

# Exhibit

| 21.1 | 100-year 10-day runoff for developing the principal       |
|------|-----------------------------------------------------------|
|      | spillway hydrograph (east)                                |
| 21.2 | Ratios of volumes of runoff $(Q_1/Q_{10})$ for developing |
|      | the PSH (east)                                            |
| 21.3 | Quick return flow for developing the principal            |
|      | spillway hydrograph                                       |
| 21.4 | 100-year 10-day runoff for developing the princi-         |
|      | pal spillway hydrograph (west)                            |
| 21.5 | Ratios of volumes of runoff $(Q_1/Q_{10})$ for develop-   |
|      | ing the PSH (west)                                        |

# Table

Page

### NATIONAL ENGINEERING HANDBOOK

### SECTION 4

### HYDROLOGY

CHAPTER 21. DESIGN HYDROGRAPHS

### Introduction

This chapter contains a systematic approach to the development of design hydrographs for use in proportioning earth dams and their spillways according to SCS criteria. Included are data or sources of data for design rainfall amount, duration, and distribution; methods of modifying design runoff to include effects of channel losses, quick return flow, or upstream releases; and methods for rapid construction of hydrographs.

The methodology presented in this chapter is suitable for the design of many types of water control structures, including channel works, but the emphasis is on hydrology for design of earth dams that provide temporary storage for flood prevention in addition to permanent storage for other uses. Its chief purpose is to contribute to safe design. Although the methods are based on data of actual storms and floods, they are not intended for reproducing hydrographs of actual floods; more suitable methods for actual floods are found in earlier chapters.

The remainder of this chapter is divided into two major parts. The first is concerned with hydrologic design for principal spillways, the second for emergency spillways. The examples in each part go only as far as the completion of hydrographs. Methods of routing hydrographs through spillways are given in chapter 17. Uses of hydrographs are illustrated in other SCS publications.

### Principal Spillways

.

The SCS criteria require principal spillway capacity and the associated floodwater retarding storage to be such that project objectives are met and that the frequency of emergency spillway operation is within specified limits. The criteria are met by use of a Principal Spillway Hydrograph (PSH) or its mass curve (PSMC), which are developed as shown in this part of the chapter. Details of SCS hydrologic criteria are given first, then details of the PSH and PSMC development are given in examples. Any one of four methods of runoff determination is suitable for the design of principal spillway capacity and retarding storage. They are (1) the runoff curve number procedure using rainfall data and the watershed's characteristics, (2) the use of runoff volume maps covering specific areas of the United States, (3) the regionalization and transposition of volume-duration-probability analyses made by the SCS Central Technical Unit, and (4) the use of local streamflow data with provision of sufficient documentation on the method and results. The latter two methods are not discussed in this chapter because they vary in procedure from case to case, due to conditions of local data, and standard procedures have not yet been established.

### Runoff Curve Number Procedure

The runoff curve number procedure uses certain climatic data and the characteristics of a watershed to convert rainfall data to runoff volume. This procedure should be used for those areas of the country not covered by runoff volume and rate maps. (Exhibit 21.1 through 21.5.)

SOURCES OF RAINFALL DATA. Rainfall data for the determination of direct runoff may be obtained from maps in U.S. Weather Bureau technical papers:

For durations to 1 day .--

TP-40. 48 contiguous States. TP-42. Puerto Rico and Virgin Islands. TP-43. Hawaii. TP-47. Alaska.

For durations from 2 to 10 days .--

TP-49. 48 contiguous States TP-51. Hawaii. TP-52. Alaska. TP-53. Puerto Rico and Virgin Islands.

AREAL ADJUSTMENT OF RAINFALL AMOUNT. If the drainage area above a structure is not over 10 square miles, no adjustment in rainfall amount is made. If it is over 10 square miles, the area-point ratios of table 21.1 may be used to reduce the rainfall amount. The table applies to all geographical locations serviced by SCS. The ratios are based on the 1- and 10-day depth-area curves of figure 10, U.S. Weather Bureau TP-49, but are modified to give a ratio of 1 at 10 square miles.

<u>RUNOFF CURVE NUMBERS</u>. The runoff curve number (CN) for the drainage area above a structure is determined and runoff is estimated as described in chapters 7 through 10. The CN is for antecedent moisture condition II and it applies to the 1-day storm used in development of the PSH or PSMC. If the 100-year frequency 10-day duration point

| Area                               | Area/point<br>l day                   | ratio for<br>10 days                  | Area                            | Area/point<br>l day                  | ratio for<br>10 days                  |
|------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|--------------------------------------|---------------------------------------|
| sq. mi.                            | <u> </u>                              |                                       | sq. mi.                         |                                      |                                       |
| 10 or less<br>15<br>20<br>25<br>30 | 1.000<br>.978<br>.969<br>.964<br>.960 | 1.000<br>.991<br>.986<br>.983<br>.981 | nie in TR                       | 937<br>732<br>28<br>.925<br>.922     | 0.968<br>.966<br>.964<br>.962<br>.961 |
| <br>35<br>40<br>50<br>60<br>70     | .957<br>952<br><b>لاح</b><br>ب        | .972<br>.970                          | 180<br>200<br>250<br>300<br>400 | .920<br>.918<br>.914<br>.911<br>.910 | .960<br>.959<br>.957<br>.956<br>.955  |

Table 21.1 .-- Ratios for areal adjustment of rainfall amount

rainfall for the structure site is 6 or more inches, the CN for the 10day storm is taken from table 21.2. If it is less than 6 inches, the CN for the 10-day storm is the same as that for the 1-day storm. The 10-day CN is used only with the total 10-day rainfall.

CLIMATIC INDEX. The climatic index used in this part of the chapter is:

 $Ci = \frac{100 \text{ Pa}}{(\text{Ta})^2}$ (21.1)

where

Ci = climatic indexPa = average annual precipitation in inches Ta = average annual temperature in degrees Fahrenheit

Precipitation and temperature data for U.S. Weather Bureau stations can be obtained from the following Weather Bureau publications:

<u>Climatological Data</u>. Issued annually and monthly for each State or a combination of States and for Puerto Rico and Virgin Islands. The annual issues contain annual and monthly data and averages or departures; monthly issues contain similar information for individual months.

Climatic Summary of the United States - Supplement for 1931-1952. Issued once for each State or a combination of States.

Climates of the States. Issued once for each State and for Puerto Rico and Virgin Islands.

Monthly Normals of Temperature, Precipitation, and Heating Degree Days. Issued once for each State or a combination of States. Also contains annual averages.

(210-VI-NEH-4, Amend. 6, March 1985)

.

|   | Runoff curve numbers for:   |                             |                            |                            |                            |                            |  |  |  |  |  |
|---|-----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|--|
|   | l day                       | 10 days                     | l day                      | 10 days                    | l day                      | 10 days                    |  |  |  |  |  |
|   | 100<br>99<br>98<br>97<br>96 | 100<br>98<br>96<br>94<br>92 | 80<br>79<br>78<br>77<br>76 | 65<br>64<br>62<br>61<br>60 | 60<br>59<br>58<br>57<br>56 | 41<br>40<br>39<br>38<br>37 |  |  |  |  |  |
| · | 95<br>94<br>93<br>92<br>91  | 90<br>88<br>86<br>84<br>82  | 75<br>74<br>73<br>72       | able in TP                 | <b>-60</b><br>52<br>51     | 36<br>35<br>34<br>33<br>32 |  |  |  |  |  |
|   | 90<br>89<br>88<br>87<br>86  | <b>Use Re</b><br>70<br>74   | 69<br>68<br>67<br>66       | 52<br>51<br>50<br>48<br>47 | 50<br>49<br>48<br>47<br>46 | 32<br>31<br>30<br>29<br>28 |  |  |  |  |  |
|   | 85<br>84<br>83<br>82<br>81  | 72<br>71<br>69<br>68<br>66  | 65<br>64<br>63<br>62<br>61 | 46<br>45<br>44<br>43<br>42 | 45<br>44<br>43<br>42<br>41 | 27<br>27<br>26<br>25<br>24 |  |  |  |  |  |

Table 21.2.--Ten-day runoff curve numbers\*

\* This table is used only if the 100-year frequency 10-day point rainfall is 6 or more inches. If it is less, the 10-day CN is the same as that for 1 day.

(210-VI-NEH-4, Amend. 6, March 1985)

<u>Climatic Maps for the National Atlas.</u> Maps with a scale of one in ten million. A map for average annual precipitation is available but there is no map for average annual temperature.

SCS personnel may obtain these publications through their Regional Technical Service Center.

CHANNEL LOSSES. If the drainage area above a structure has a climatic index less than 1, then the direct runoff from rainfall may be decreased to account for channel losses of influent streams. Channel losses can be determined from local data but the losses must not be more than determined by use of table 21.3. When adequate local data are not available, table 21.3 is to be used. Example 21.1 gives the procedure for making the channel loss reduction of direct runoff.

Channel losses in areas where the climatic index is 1 or more will require special study; results must be approved by the Director, Engineering Division, before being used in final design hydrology.

<u>QUICK RETURN FLOW.</u> Quick return flow (QRF) is the rate of discharge that persists for some period beyond that for which the 10-day PSH is derived. It includes base flow and other flows that become a part of the flood hydrograph such as (1) rainfall that has infiltrated and reappeared soon afterwards as surface flow; (2) drainage from marshes and potholes; and (3) delayed drainage from snow banks. If the drainage area above a structure has a climatic index greater than 1, then QRF must be added to the hydrograph or mass curve of direct runoff from rainfall. QRF can be determined from local data but it must not be less than the steady rate determined by use of table 21.4. When adequate local data are not available, table 21.4 is to be used. Example 21.2 gives the procedure for adding QRF to the hydrograph or mass curve of direct runoff derived from rainfall.

UPSTREAM RELEASES. Releases from upstream structures must be added to the hydrograph or mass curve of runoff. This addition must be made regardless of other additions or subtractions of flow. Upstream release rates are determined from routings of applicable hydrographs or mass curves through the upstream structures and the reaches downstream from them.

COMBINATIONS OF CHANNEL LOSS, QUICK RETURN FLOW AND UPSTREAM RELEASE. In the introduction it was stated that the chief purpose of the methodology in this chapter is to contribute to safe design and that these methods are not intended for reproducing actual floods. Equation 21.1 and tables 21.1 through 21.4 must be considered in that light.

For large watersheds the topography may be such that two climatic indexes are needed, for example where a semiarid plain is surrounded by mountains. In such cases the design storm is determined for the watershed as a whole, the direct runoff is estimated separately for the two

 $\sim 10^{-1}$ 

| T<br>DRAINAGE I |      |        | CLINAT | IC INDE | K CI |       | ******         |
|-----------------|------|--------|--------|---------|------|-------|----------------|
| AREA :<br>:     | 1.0  | 0.9    | C • 8  | 0.7     | 0.6  | 0.5   | 0.4 OR<br>LESS |
| 50. MI.         |      |        |        |         |      |       |                |
| 1. OR LESS      | 1.00 | 1.00   | 1.00   | 1.00    | 1.00 | 1.00  | 1.00           |
| 2.              | 1.00 | • 98   | •97    | .95     | • 93 | •90   | <b>.</b> 87    |
| 3.              | 1.00 | • 98   | •95    | .92     | • 89 | .85   | .80            |
| 4.              | 1.00 | •97    | •94    | •90     | • 86 | •81   | •76            |
| 5.              | 1.90 | •96    | •92    | •88     | •84  | •78   | •73            |
| 6.              | 1.00 | .96    | .92    | .87     | •82  | •76   | •70            |
| 7.              | 1.00 | •96    | •91    | .85     | • 81 | •75   | •68            |
| 8.              | 1.00 | • 95   | •90    | •85     | •79  | •73   | • 6 6          |
| 9.              | 1.00 | •95    | •90    | •84     | •78  | •72   | .65            |
| 10.             | 1.00 | • 95   | .89    | .84     | •77  | •71   | •63            |
| 20.             | 1.00 | •93    | .86    | •79     | •72  | •64   | 55             |
| 30.             | 1.00 | • 93   | •85    | •77     | . 69 | .60   | .51            |
| 40.             | 1.00 | •92    | -84    | •75     | • 66 | •57   | •48            |
| 50.             | 1.00 | •91    | •83    | •74     | +65  | •55   | .46            |
| 60.             | 1.00 | •91    | - 82   | •73     | •63  | •54   | • 4 4          |
| 70.             | 1.00 | .91    | •81    | •72     | •62  | •53   | .43            |
| 89.             | 1.00 | •90    | -81    | •71     | • 62 | • 5 2 | .42            |
| 90.             | 1.00 | •90    | 80     | •71     | •61  | •51   | .41            |
| 00.             | 1.00 | . • 90 | .80    | •70     | • 60 | •20   | .40            |
| 50.             | 1.00 | • 89   | •78    | .68     | •57  | .47   | •37            |
| 00.             | 1.00 | • 89   | •77    | •66     | • 56 | •45   | .35            |
| 50.             | 1.00 | .88    | •77    | • 65    | •54  | . 4 4 | .33            |
| 00.             | 1.00 | • 88   | •75    | •64     | • 53 | •42   | •32            |
| 50.             | 1.00 | •87    | •75    | •64     | •52  | •41   | •31            |
| QQ.             | 1.00 | •87    | •75    | .63     | -51  | •41   | .30            |

TABLE 21.3--CHANNEL-LOSS FACTORS FOR REDUCTION OF DIRECT RUNOFF

+U.S. GOVERNMENT PRINTING OFFICE: 1981- 240-691:301

21.6(1)

NEH Notice 4-103, June 1981

|             |              |                  | the state of the s |                    |                                               |
|-------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|
| Ci          | QRF          |                  | Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QRF                | <u>.                                    </u>  |
|             | in./day      | CSM              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in./day            | CSM                                           |
|             |              |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                               |
|             |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |
|             |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 6 00                                          |
| 1.00        | 0            | 0                | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.234              | 6.29                                          |
| 1.02        | .011         | .30              | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b> 239       | 6.43                                          |
| 1.04        | •022         | .60              | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .244               | 6.56                                          |
| 1.06        | .033         | •90              | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .249               | 6.70                                          |
| 1.08        | .045         | 1.20             | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .254               | 6.83                                          |
|             |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |
| 1.10        | .056         | 1.50             | 1.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .259               | 6.96                                          |
| 1.12        | . 067        | 1.80             | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .270               | 7.26                                          |
| 1.14        | <b>.</b> 078 | 2.10             | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , cr               | 7 53                                          |
| 1.16        | .089         | 2.40             | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 7.80                                          |
| 1.18        | ,100         | 2.70             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-60               | 8.04                                          |
| - 4-0       |              |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n                  |                                               |
| 1.20        | .112         | 3.00             | nie ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .308               | 8.28                                          |
| 1.22        | .123         | 7                | Tav. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .318               | 8.55                                          |
| 1.24        | 133          | ise <sup>0</sup> | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .326               | 8.76                                          |
| 1.26        |              | aevis            | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .335               | 9.00                                          |
| 1.28        | 1198         | . 11             | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 343                | 9.22                                          |
| 1.10        | 0-           | • • •            | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • / • /            | <i>)</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 1.30        | . 163        | 4.38             | 2.10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .351               | 9.44                                          |
| 1.32        | .171         | 4.60             | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 367                | 9.87                                          |
| 1 34        | 180          | 1 84             | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 382                | 10.27                                         |
| 1 36        | 188          | 5.06             | 2.JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 306                | 10.65                                         |
| 1 38        | .100         | 5 0              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0ور.<br>مدير       | 11 02                                         |
| 1.90        | •190         | J.24             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •410               | 11.05                                         |
| ן<br>רע נ   | 202          | 5.43             | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.03               | . 11.37                                       |
| סול ר       | 202          | 5 62             | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126                | ••21<br>79                                    |
| ⊥.+∠<br>յհի | • 207        | 5 21             | 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -+90<br>Julia      | 10 07                                         |
| 1 h6        | •510         | 5.07             | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <del>•••</del> > | 10 10                                         |
| 1.40<br>1.0 | • 222        | 2.21<br>6 17     | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.401              | 10 70                                         |
| 1.40        | • 220        | 0.10             | 2+00**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •412               | 12•{2                                         |
|             |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |

Table 21.4. Minimum quick return flow for PSH derived from rainfall.

\* Change in tabulation interval. \*\* For Ci greater than 3, use:  $QRF = 9 (Ci - 1)^{0.5}$  for QRF in csm or  $QRF = 0.335 (Ci - 1)^{0.5}$  for QRF in

inches per day.

(210-VI-NEH-4, Amend. 6, March 1985)

parts by use of appropriate CN and then combined, the channel loss reduction is based on the area of the semiarid plain and its climatic index, the hydrograph or mass curve of direct runoff is constructed, and QRF from the mountain area is added.

If there are upstream structures, their releases are always added regardless of the downstream climatic index or other considerations.

### Runoff Volume Maps Procedure

The runoff volume and rate maps, exhibits 21.1 through 21.5, are provided for areas of the United States where measured runoff volumes vary significantly from those obtained from the curve number procedure for converting rainfall to runoff. The mapped areas are of two general types: (1) the areas where runoff from either snowmelt, dormant season rainfall, or a combination of the two produce greater runoff volumes than growing season rainfall and (2) the deep snowpack areas of high mountain elevations.

AREAS OF MAPPED RUNOFF VOLUME. The 100-year 10-day runoff volume maps, exhibits 21.1 and 21.4, represent regionalized values derived from gaged streamflow data and supplemented with climatological data and local observations. These values should be used for estimating floodwater detention storage within the map area where local streamflow data are not adequate.

Areal reduction should not be made on the 10-day runoff volumes shown in the maps. Since these amounts were derived from stream gage data, base flow and channel loss will be automatically included in the map values and in Table 21.10.

Quick return flow in this procedure is used as the rate of discharge expected to persist beyond the flood period described under the 10-day PSH. The rates of discharge, exhibit 21.3, were derived by averaging the accumulated depths of runoff between the 15th and 30th day on volume-duration-probability (VDP) accumulation graphs. They were obtained from the same VDP station data from which the 100-year 10-day runoff volumes in exhibit 21.1 were obtained.

When using the Runoff Volume Maps Procedure, the quick return flow rate, exhibit 21.3, is made an extension to the PSH before routing it through the reservoir, figure 21.1a.

DEEP SNOWPACK AREAS. Flood volume estimates from the deep snowpack areas may be calculated from local streamflow data or by regionalization and transposition of streamflow data.

A standard procedure for making a regional analysis of volumes of runoff for varying durations and frequencies has not been developed at this time. Past experience has indicated that acceptable estimates can be made using multiple regression techniques. If watersheds can be selected that are reasonably homogeneous with regard to items



Figure 21.1a Quick Return Flow Combined with Principal Spillway Hydrograph for the Runoff Volume Maps Procedure.

such as seasonal precipitation, range of elevation, aspect, cover, geology, soils, etc., estimating equations can be developed with a minimum number of independent variables. Until techniques are developed to properly analyze the effects of a number of variables, the selection of homogeneous gaged watersheds with as much similarity to the ungaged watersheds as possible is recommended for estimating volume-duration-probability data. Statistics from volume-durationprobability studies of gaged watersheds can also be used to assist in developing estimating equations.

### Construction of Principal Spillway Hydrographs and Mass Curves

The principal spillway capacity and retarding storage amount are proportioned using the Principal Spillway Hydrograph (PSH) or its mass curve (PSMC) developed from tabulations given in table 21.10. Examples in this section show how to select the appropriate set of tabulations and to construct the PSH or PSMC. One or more routings of the PSH or PSMC give the required storage and principal spillway capacity; the routings are discussed in chapter 17.

DEVELOPMENT OF TABLE 21.10. The principles of hydrograph development are discussed in chapter 16 but because the standard series of PSH and PSMC is not described there, the method of preparation will be briefly given here.

The PSH and PSMC in table 21.10 are developed from a continuous 10-day period of on-site direct runoff, all of a given frequency. Choice of the 10-day period is based on SCS experience with the use of both stream-flow records and an earlier system of standardized hydrographs. If the runoff in the 10-day period is arranged in order of decreasing ÷

rate of flow and then accumulated to form a mass curve, it has the appearance of curve A in figure 21.1. Such a curve is a straight line on log paper and it has the equation:

$$Q_{\rm D} = Q_{10} \left( D/10 \right)^{\rm a}$$
 (21.2)

where

 $Q_D$  = total runoff at time D in days

 $Q_{10}$  = total runoff at the end of 10 days

D = time in days

a = log  $(Q_{10}/Q_1)$ , in which  $Q_1$  is the total runoff at the end of 1 day

Thus, knowing only the 1- and 10-day runoff amounts, a continuous mass curve can be developed for the entire 10-day period.

Examination of such mass curves of runoff from streamflow stations in many locations of the United States showed that the exponent <u>a</u> varied from 0.1 to 0.5. Extremes of 0.0458 and 0.699 were chosen for the standard curves; these extremes correspond to  $Q_1/Q_{10}$  ratios of 0.9 and 0.2 respectively. The ratio  $Q_1/Q_{10}$  is used hereafter in this chapter as a parameter in preference to <u>a</u> or  $Q_{10}/Q_1$  because  $Q_{10}$  is more satisfactory as a divisor in preparing PSH and PSMC with dimensionless rates and amounts of flow.  $Q_1/Q_{10}$  ratios of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were selected to give representative degrees of curvature for the runoff curves.

The 10-day on-site runoff for each  $Q_1/Q_{10}$  ratio was rearranged as shown in table 21.5 to provide a moderately critical distribution of the 10-day runoff. This gave a distribution midway between extremes that are theoretically possible. On figure 21.1, curves A and B show the extremes and curve C shows the rearranged distribution for a  $Q_1/Q_{10}$ ratio of 0.4.

The effects of watershed lag were included by taking increments of runoff for each of the eight typical mass curves, making incremental hydrographs, and summing these to give total hydrographs for watersheds with times of concentration of 1.5, 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, and 72 hours. This gave 112 hydrographs, each of which was reduced to unit rates of runoff and afterwards accumulated and reduced to unit mass curves. Curve D in figure 21.1 is the mass curve developed from curve C for a watershed with a time of concentration of 24 hours. Runoff for curve D went on for more than a day past the termination point E but because the rate was so small, the mass curve was terminated as shown. Other PSH and PSMC in table 21.10 are similarly terminated. The time interval is varied to reduce the size of the table and at the same time give enough points for reproducing the PSH and PSMC accurately. Straight-line connection of points is accurate enough for graphical work and linear interpolation for tabular work.

<u>USE OF TABLE 21.10.</u> The parameters for selecting a set of tabulations from table 21.10 are the  $Q_1/Q_{10}$  ratio and the time of concentration  $T_c$  in hours. The ratio and  $T_c$  of a watershed will seldom be values for

•

•

.

| Time        | Increment            |
|-------------|----------------------|
| days        |                      |
| 0.0 to 0.5  | 19th largest 1/2 day |
| 0.5 to 1.0  | 17th " " "           |
| 1.0 to 1.5  | 15th " " "           |
| 1.5 to 2.0  | 13th " " "           |
| 2.0 to 2.5  | llth """             |
| 2.5 to 3.0  | 9th """              |
| 3.0 to 3.5  | 7th """              |
| 3.5 to 4.0  | 5th " " "            |
| 4.0 to 4.5  | 3rd " " "            |
| 4.5 to 4.6  | 9th largest 1/10 day |
| 4.6 to 4.7  | 7th "" "             |
| 4.7 to 4.8  | 5th " " "            |
| 4.8 to 4.9  | 3rd " " "            |
| 4.9 to 5.0  | Largest 1/10 day     |
| 5.0 to 5.1  | 2nd largest 1/10 day |
| 5.1 to 5.2  | 4th """              |
| 5.2 to 5.3  | 6th " " "            |
| 5.3 to 5.4  | 8th " " "            |
| 5.4 to 5.5  | 10th " " "           |
| 5.5 to 6.0  | 4th largest 1/2 day  |
| 6.0 to 6.5  | 6th " " "            |
| 6.5 to 7.0  | 8th " " "            |
| 7.0 to 7.5  | 10th " " "           |
| 7.5 to 8.0  | 12th " " "           |
| 8.0 to 8.5  | 14th " " "           |
| 8.5 to 9.0  | 16th " " "           |
| 9.0 to 9.5  | 18th " " "           |
| 9.5 to 10.0 | 20th " " "           |

Table 21.5.--Arrangement of increments before construction of PSH and PSMC

which the table is prepared, therefore choose that set having a  $Q_1/Q_{10}$  ratio and  $T_{\rm C}$  nearest those of the watershed. It is easier to make the choice on table 21.9, which gives available PSH and PSMC and their serial numbers, and then to look up the serial number in table 21.10 for the tabulations.

#### Examples

The procedure by which a PSH or PSMC is developed will be illustrated by four examples. In example 21.1, channel losses are taken from direct runoff before development of a PSH and PSMC; in example 21.2, QRF is added to a PSH and PSMC; in example 21.3, runoff volume and rate maps (exhibit 21.1 through 21.5) are used to obtain runoff; and in example 21.4, upstream releases are added to a PSH.

Example 21.1.--Develop the 50-year frequency PSH and PSMC for a watershed located at latitude \_\_\_\_\_\_\_\_. longitude \_\_\_\_\_\_\_. The watershed has a drainage area of 15.0 square miles, time of concentration of 7.1 hours, average annual precipitation of 22.8 inches, average annual temperature of 61.5°F, and a runoff curve number (CN) of 80. There are no upstream structures.

1. Compile the 1- and 10-day point rainfall amounts from U.S. Weather Bureau maps. For this location TP-40 and TP-49 are used. The 50-year frequency 1- and 10-day amounts are 6.8 and 11.0 inches respectively.

2. Determine the areal rainfall. Get the adjustment factors from table 21.1. For the drainage area of 15.0 square miles they are 0.978 and 0.991 for the 1- and 10-day rains respectively. The areal rainfall is 0.978(6.8) = 6.65 inches for the 1-day rain and 0.991(11.0) = 10.9 inches for the 10-day rain.

3. Determine the CN for the 10-day rain. First check whether the 100-year frequency 10-day point rainfall amount is 6 or more inches. The appropriate map in TP-49 shows it is, therefore enter table 21.2 with the 1-day CN of 80 and find the 10-day CN is 65.

4. Estimate the direct runoff for 1 and 10 days. Enter figure 10.1 with the rainfall amounts from step 2 and the appropriate CN from step 3 and find  $Q_1 = 4.37$  and  $Q_{10} = 6.34$  inches.

5. <u>Compute the climatic index</u>. Using the given data and equation 21.1, the index Ci is  $100(22.8)/61.5^2 = 0.603$ . Because the Ci is less than 1 the channel loss may be used to reduce direct runoff.

6. Estimate the net runoff. The net runoff is the direct runoff minus the channel loss but when table 21.3 is used the net runoff is obtained by a multiplication not a subtraction. Enter table 21.3 with the drainage area 15.0 square miles and the Ci of 0.603 and by interpolation find a reduction factor of 0.75. Multiply  $Q_1$  and  $Q_{10}$  of step 4 by the factor to get net runoffs of 3.28 and 4.76 inches respectively. The net runoffs will be  $Q_1$  and  $Q_{10}$  in the rest of this example.

7. Compute the  $Q_1/Q_{10}$  ratio. From step 6,  $Q_1/Q_{10} = 3.28/4.76 = 0.689$ .

8. Find the PSH and PSMC tabulations in table 21.10. Enter table 21.9 with the ratio 0.689 and  $T_c$  of 7.1 hours and find that the PSH with values nearest those is No. 22. Locate the appropriate tabulations in table 21.10 by looking up PSH No. 22. Columns 1, 2, and 4 of table 21.6 show the time, rate, and mass tabulations taken from table 21.10.

9. <u>Compute PSH discharges in cfs.</u> First find the product of drainage area and  $Q_{10}$ . This is 15.0(4.76) = 71.40 mile<sup>2</sup>-inches. Multiply the entries in column 2, table 21.6 by 71.40, to get the discharges in cfs in column 3.

10. Compute PSMC amounts in inches. Multiply the entries in column 4, table 21.6, by  $Q_{10}$  (4.76) to get accumulated runoff in inches as shown in column 5. If amounts in acre-feet or another unit are desired, convert  $Q_{10}$  to the desired unit before making the series of multiplications.

The example is completed with step 10. The next step is that of routing the PSH or PSMC through the structure; see chapter 17 for routing methods.

In the second example the steps concerning channel loss are omitted and steps concerning QRF are included.

Example 21.2--Develop the 25-year frequency PSH and PSMC for a watershed at latitude \_\_\_\_\_, longitude \_\_\_\_\_. The watershed has a drainage area of 8.0 square miles, time of concentration of 2.0 hours, average annual precipitation of 30.5 inches, average annual temperature of 53.1°F, and a runoff curve number of 75. QRF during flood periods is estimated to be 5 cfs. There are no upstream structures in the watershed.

1. Compile the 1- and 10-day point rainfall amounts from U.S. Weather Bureau maps. For this location TP-40 and TP-49 are used. The 25-year frequency 1- and 10-day amounts are 5.6 and 12.5 inches respectively.

2. <u>Determine the areal rainfall</u>. Because the drainage area is not over 10 square miles the areal rainfall is the same as the point rainfall. The amounts in step 1 will be used.

21.14

Table 21.6.--PSH and PSMC for example 21.1

| Time                               | cfs<br>A Q <sub>10</sub>          | PSH                      | Acc. Q<br>Q <sub>10</sub>                  | PSMC                                         |
|------------------------------------|-----------------------------------|--------------------------|--------------------------------------------|----------------------------------------------|
| days                               | csm/inch                          | cfs                      |                                            | inches                                       |
| 0                                  | 0                                 | 0                        | 0                                          | 0                                            |
| .2                                 | .231                              | 16                       | .0007                                      | .00                                          |
| .5                                 | .418                              | 30                       | .0045                                      | .02                                          |
| 1.0                                | .535                              | 38                       | .0135                                      | .06                                          |
| 2.0                                | .610                              | 44                       | .0340                                      | .16                                          |
| 3.0                                | .837                              | 60                       | .0609                                      | •29                                          |
| 3.6                                | 1.123                             | 80                       | .0827                                      | •39                                          |
| 4.0                                | 1.398                             | 100                      | .1019                                      | •48                                          |
| 4.3                                | 1.932                             | 138                      | .1196                                      | •57                                          |
| 4.6                                | 2.865                             | 204                      | .1464                                      | •70                                          |
| 4.8                                | 3.973                             | 284                      | .1709                                      | .81                                          |
| 4.9                                | 5.461                             | 390                      | .1883                                      | .90                                          |
| 5.0                                | 27.118                            | 1936                     | .2482                                      | 1.18                                         |
| 5.1                                | 55.278                            | 3947                     | .3998                                      | 1.90                                         |
| 5.2                                | 41.011                            | 2928                     | .5770                                      | 2.75                                         |
| 5.3                                | 23.735                            | 1695                     | .6961                                      | 3.31                                         |
| 5.4                                | 13.975                            | 998                      | .7655                                      | 3.64                                         |
| 5.5                                | 8.668                             | 619                      | .8072                                      | 3.84                                         |
| 5.6                                | 5.638                             | 402                      | .8335                                      | 3.97                                         |
| 5.8                                | 2.818                             | 201                      | .8634                                      | 4.11                                         |
| 6.0                                | 1.859                             | 133                      | .8798                                      | 4.19                                         |
| 6.5                                | 1.360                             | 97                       | .9078                                      | 4.32                                         |
| 7.0                                | 1.002                             | 72                       | .9290                                      | 4.42                                         |
| 7.5                                | .804                              | 57                       | .9453                                      | 4.50                                         |
| 8.0                                | .687                              | 59                       | .9588                                      | 4.56                                         |
| 9.0<br>9.9<br>10.1<br>10.3<br>10.8 | •533<br>•416<br>•194<br>•044<br>0 | 38<br>30<br>14<br>3<br>0 | .9812<br>.9966<br>.9990<br>.9998<br>1.0000 | 4.67<br>4.74<br>4.76<br>4.76<br>4.76<br>4.76 |

3. Determine the CN for the 10-day rain. The 10-day amount in step 1 is over 6 inches therefore the 100-year 10-day amount is too, and table 21.2 may be used. Enter the table with the CN of 75 for 1 day and find the CN is 58 at 10 days.

4. Estimate the direct runoff for 1 and 10 days. Enter figure 10.1 with the rainfall amounts from step 2 and the appropriate CN from step 3 and find  $Q_1 = 2.94$  and  $Q_{10} = 6.68$  inches. Because there are no channel losses, the direct runoff is the net runoff.

5. Compute the  $Q_1/Q_{10}$  ratio. From step 4,  $Q_1/Q_{10} = 2.94/6.68 = 0.440$ .

6. Find the PSH and PSMC tabulations in table 21.10. Enter table 21.9 with the ratio of 0.440 and  $T_c$  of 2.0 hours and find that the PSH and PSMC with values nearest those is No. 3. Locate the appropriate tabulations in table 21.10 by looking up PSH No. 3.

7. Compute PSH discharges in cfs. First find the product of drainage area and  $Q_{10}$ . This is 8.0(6.68) = 53.44 mile<sup>2</sup>-inches. Multiply the entries in table 21.10 for PSH No. 3 by 53.44 to get discharges in cfs. These are shown in column 2, table 21.7, under the heading of "Preliminary PSH" because the final PSH must contain QRF.

8. <u>Compute PSMC amounts in inches</u>. Multiply the entries in table 21.10 for PSMC No. 3 by  $Q_{10}$  (6.68 inches) to get accumulated runoff in inches. The results are shown in column 5, table 21.7, under the heading "Preliminary PSMC" because the final PSMC must contain accumulated QRF. If the PSMC is to be in acre-feet or another unit, convert  $Q_{10}$  to the desired unit before making the series of multiplications.

9. Determine the minimum permissible quick return flow. First compute the climatic index: using the average annual precipitation and temperature and equation 21.1, the index Ci is  $100(30.5)/53.1^2 = 1.08$ . Enter table 21.4 with the Ci of 1.08 and find that the minimum QRF is 0.045 inches per day or 1.20 csm, which converts to 8.0(1.20) = 9.6 cfs. The locally estimated QRF is 5 cfs. Therefore the minimum permissible QRF is 9.6 cfs because it is larger than the locally estimated flow. Round 9.6 to 10 cfs and tabulate in column 3, table 21.7.

10. Add QRF to the preliminary PSH. The QRF shown in column 3, table 21.7, is added to the preliminary PSH, column 2, to give the PSH discharges in column 4.

11. Add QRF to the preliminary PSMC. The accumulated QRF in inches, column 6, table 21.7, is added to the preliminary PSMC column 5, to give the PSMC amounts in column 7.

Table 21.7.--PSH and PSMC for example 21.2

| Time                            | Prelim-<br>inary<br>PSH          | QRF*                 | PSH                              | Prelim-<br>inary<br>PSMC             | Acc.<br>QRF**                   | PSMC                                 |
|---------------------------------|----------------------------------|----------------------|----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|
| days                            | cfs                              | <u>cfs</u>           | <u>cfs</u>                       | inches                               | inches                          | inches                               |
| 0                               | 0                                | 10                   | 10                               | 0                                    | 0                               | 0                                    |
| .1                              | 48                               | 10                   | 58                               | .01                                  | .00                             | .01                                  |
| .5                              | 60                               | 10                   | 70                               | .11                                  | .02                             | .13                                  |
| 1.0                             | 69                               | 10                   | 79                               | .26                                  | .04                             | .30                                  |
| 2.0                             | 78                               | 10                   | 88                               | .60                                  | .09                             | .69                                  |
| 3.0<br>3.5<br>4.0<br>4.2<br>4.4 | 100<br>118<br>146<br>181<br>230  | 10<br>10<br>10<br>10 | 110<br>128<br>156<br>191<br>240  | 1.00<br>1.26<br>1.58<br>1.72<br>1.91 | .14<br>.16<br>.18<br>.19<br>.20 | 1.14<br>1.42<br>1.76<br>1.91<br>2.11 |
| 4.6<br>4.7<br>4.8<br>4.9<br>5.0 | 259<br>298<br>370<br>512<br>1992 | 10<br>10<br>10<br>10 | 269<br>308<br>380<br>522<br>2002 | 2.13<br>2.25<br>2.40<br>2.60<br>3.16 | .21<br>.21<br>.22<br>.22<br>.22 | 2.34<br>2.46<br>2.62<br>2.82<br>3.38 |
| 5.1                             | 1039                             | 10                   | 1049                             | 3.84                                 | .23                             | 4.07                                 |
| 5.2                             | 567                              | 10                   | 577                              | 4.20                                 | .23                             | 4.43                                 |
| 5.3                             | 383                              | 10                   | 393                              | 4.42                                 | .24                             | 4.66                                 |
| 5.4                             | 302                              | 10                   | 312                              | 4.57                                 | .24                             | 4.81                                 |
| 5.5                             | 257                              | 10                   | 267                              | 4.69                                 | .25                             | 4.94                                 |
| 5.6                             | 207                              | 10                   | 217                              | 4.80                                 | •25                             | 5.05                                 |
| 5.8                             | 174                              | 10                   | 184                              | 4.97                                 | •26                             | 5.23                                 |
| 6.0                             | 154                              | 10                   | 164                              | 5.11                                 | •27                             | 5.38                                 |
| 6.5                             | 128                              | 10                   | 138                              | 5.41                                 | •29                             | 5.70                                 |
| 7.0                             | 108                              | 10                   | 118                              | 5.66                                 | •32                             | 5.98                                 |
| 8.0                             | 84                               | 10                   | 94                               | 6.07                                 | .36                             | 6.43                                 |
| 9.0                             | 72                               | 10                   | 82                               | 6.41                                 | .40                             | 6.81                                 |
| 10.0                            | 57                               | 10                   | 67                               | 6.66                                 | .45                             | 7.11                                 |
| 10.1                            | 2                                | 10                   | 12                               | 6.68                                 | .45                             | 7.13                                 |
| 10.3                            | 0                                | 10                   | 10                               | 6.68                                 | .46                             | 7.14                                 |
| 11.0                            | 0                                | 10                   | 10                               | 6.68                                 | .50                             | 7.18                                 |
| 12.0                            | 0                                | 10                   | 10                               | 6.68                                 | .54                             | 7.22                                 |
| etc.                            | etc.                             | etc.                 | etc.                             | etc.                                 | etc.                            | etc.                                 |

\* 9.6 cfs rounded to 10 cfs.

\*\* At a rate of 0.045 inches per day.

Example 21.3--Develop the 100-year frequency PSH for a watershed located at 43° latitude and 77° longitude. The watershed has a drainage area of 12 square miles, time of concentration of 3.5 hours.

1. Estimate 100-year 10-day runoff volumes from exhibit 21.1. The interpolated value is 8.8.

2. Select the  $Q_1/Q_{10}$  ratio from exhibit 21.2. For this area the value is 0.4.

3. <u>Calculate 1-day volume of runoff.</u>  $Q_1/Q_{10} = 0.4$ ,  $Q_1 = (0.4)$ (8.8) = 3.52 inches.

4. Find the PSH tabulations in Table 21.10. Enter table 21.9 with the  $Q_1/Q_{10}$  ratio of 0.4 and Tc of 3.5 hours and find that the PSH with values nearest is No. 11. Locate appropriate tabulations in table 21.10 by looking up PSH No. 11.

5. Compute PSH discharges in cfs. Find the product of drainage area and  $Q_{10}$ . This is (12) (8.8) = 105.6 mile<sup>2</sup>-inches. Entries for PSH No. 11 are multiplied by this value to obtain discharge in cfs. These are shown in column 2, table 21.8.

6. <u>Determine the quick-return flow rate.</u> From exhibit 21.3 the interpolated value is 5.3 csm.

7. Extension of quick-return flow rates beyond the PSH. The quick-return flow rate is (12)(5.3) = 63.6 cfs, round to 64 cfs. This constant rate of discharge is an extension to the PSH as shown in figure 21.1a, and column 4, table 21.8. No value less than 64 cfs should be used in the recession side of the PSH.

The procedure for adding releases from upstream structures is shown in the following descriptive example. If a lower structure has channel losses in its contributing area the deduction for channel loss is made in the preliminary PSH for that area. Deductions may also be required for PSH of the upper structures but once these PSH are routed through the structures no further deductions are made in the release rates.

Example 21.4--Adding releases from upstream structures when developing the PSH for a lower structure in a series is done as follows:

1. <u>Develop the preliminary PSH for the lower structure</u>. Use the method of example 21.1 or 21.2 or 21.3 whichever is applicable.

| Time | Prelim-<br>inary<br>PSH | GRF  | PSH        |
|------|-------------------------|------|------------|
| daws |                         | ofs  | ofs        |
| days |                         |      | <u>C15</u> |
| 0    | 0                       |      | 0          |
| .1   | 61                      |      | 61         |
| •5   |                         |      | TT0<br>TUP |
| 2.0  | 154                     |      | 151        |
| 2.0  |                         |      |            |
| 3.0  | 195                     |      | 195        |
| 3.5  | 230                     |      | 230        |
| 4.0  | 285                     |      | 285        |
| 4.3  | 371                     |      | 371        |
| 4.6  | 495                     |      | 495        |
| 4.8  | 667                     |      | 667        |
| 4.9  | 894                     |      | 894        |
| 5.0  | 2885                    |      | 2885       |
| 5.1  | 2455                    |      | 2455       |
| 5.2  | 1478                    |      | 1478       |
| 5.3  | 954                     |      | 954        |
| 5.4  | 696                     |      | 696        |
| 5.5  | 552                     |      | 552        |
| 5.6  | 446                     |      | 446        |
| 5.7  | 383                     |      | 383        |
| 5.8  | 352                     |      | 352        |
| 6.0  | 307                     |      | 307        |
| 6.5  | 251                     |      | 251        |
| 7.0  | 211                     |      | 211        |
| 7.5  | 181                     |      | 181        |
| 8.0  | 163                     |      | 163        |
| 9.0  | 140                     |      | 140        |
| 10.0 | 111                     |      | 111        |
| 10.1 | 16                      | 64   | 64         |
| 10.7 | 0                       | 64   | 64         |
| 11.0 | Ο                       | 64   | ճե         |
| 12.0 | õ                       | 64   | 64         |
| etc. | etc.                    | etc. | etc.       |
|      | -                       |      |            |

Table 21.8.--PSH for Example 21.3.

NEH Notice 4-1, January 1971

.

2. <u>Flood-route the upstream structure releases or outflows to</u> the lower structure. Chapter 17 discusses flood-routing procedures.

3. Add the routed flows to the preliminary PSH to get the PSH for the lower structure.

Note that if an upstream structure is itself a lower structure in a series then the procedure of example 21.4 must be followed for it first.

| Ta            |                                       |     | Q <sub>1</sub> , | /Q <sub>10</sub> |     |     |     |          |
|---------------|---------------------------------------|-----|------------------|------------------|-----|-----|-----|----------|
|               | 0.2                                   | 0.3 | 0.4              | 0.5              | 0.6 | 0.7 | 0.8 | 0.9      |
| hours         | · · · · · · · · · · · · · · · · · · · |     | Seria            | al numb          | ers |     |     | <u> </u> |
| .1.5 <b>*</b> | 1                                     | 2   | 3                | 4                | 5   | 6   | 7   | 8        |
| 3             | 9                                     | 10  | 11               | 12               | 13  | 14  | 15  | 16       |
| 6             | 17                                    | 18  | 19               | 20               | 21  | 22  | 23  | 24       |
| 12            | 25                                    | 26  | 27               | 28               | 29  | 30  | 31  | 32       |
| 18            | 33                                    | 34  | 35               | 36               | 37  | 38  | 39  | 40       |
| 24            | 41                                    | 42  | 43               | 44               | 45  | 46  | 47  | 48       |
| 30            | 49                                    | 50  | 51               | 52               | 53  | 54  | 55  | 56       |
| 36            | 57                                    | 58  | 59               | 60               | 61  | 62  | 63  | 64       |
| 42            | 65                                    | 66  | 67               | 68               | 69  | 70  | 71  | 72       |
| 48            | 73                                    | 74  | 75               | 76               | 77  | 78  | 79  | 80       |
| 54            | 81                                    | 82  | 83               | 84               | 85  | 86  | 87  | 88       |
| 60            | 89                                    | 90  | 91               | 92               | 93  | 94  | 95  | 96       |
| 66            | 97                                    | 98  | 99               | 100              | 101 | 102 | 103 | 104      |
| 72 <b>*</b> * | 105                                   | 106 | 107              | 108              | 109 | 110 | 111 | 112      |

Table 21.9 .-- Serial numbers of PSH and PSMC

\* Use this row for all  $T_C$  less than 1.5 hours.

\*\* Use this row for all  $T_c$  over 72 hours.

Table 21.10.--Time, rate and mass tabulations for Principal Spillway Hydrographs (PSH) and Mass Curves (PSMC)

|                    |                      |              |                      |                         |          |                         | T <sub>c</sub> = 1.5 | hours         |  |
|--------------------|----------------------|--------------|----------------------|-------------------------|----------|-------------------------|----------------------|---------------|--|
| Serial No. : 1     |                      | .2           | 2                    |                         | 3        | 3                       |                      | <u>4</u>      |  |
| $Q_1/Q_{10}$ : 0.2 |                      |              | 0.3                  |                         | 0.       | 0.4                     |                      | 0.5           |  |
| Time               | PSH                  | PSMC         | PSH                  | PSMC                    | PSH      | PSMC                    | PSH                  | PSMC          |  |
| days               | cfs/AQ <sub>10</sub> | <u>Q/Q10</u> | cfs/AQ <sub>10</sub> | <u>Q/Q<sub>10</sub></u> | cfs/AQ10 | <u>q/q<sub>10</sub></u> | cfs/AQ <sub>10</sub> | <u>Q/Q</u> 10 |  |
| 0                  | 0                    | 0            | 0                    | 0                       | 0        | 0                       | 0                    | 0             |  |
| •1                 | 1.584                | .0028        | 1.188                | .0021                   | .890     | .0016                   | .704                 | .0013         |  |
| •5                 | 2.014                | .0308        | 1.510                | .0230                   | 1.119    | .0170                   | .895                 | .0136         |  |
| 1.0                | 2.126                | .0687        | 1.594                | .0515                   | 1.286    | .0397                   | .951                 | .0305         |  |
| 2.0                | 2.237                | .1480        | 1.846                | .1156                   | 1.454    | .0894                   | 1.203                | .0705         |  |
| 3.0                | 2.517                | .2358        | 2.209                | .1904                   | 1.873    | .1505                   | 1.510                | .1208         |  |
| 3.5                | 2.741                | .2845        | 2.489                | .2342                   | 2.208    | .1890                   | 1.846                | .1530         |  |
| 4.0                | 3.210                | .3385        | 2.992                | .2866                   | 2.741    | .2365                   | 2.405                | .1946         |  |
| 4.2                | 3.470                | .3624        | 3.618                | .3094                   | 3.394    | .2583                   | 3.222                | .2144         |  |
| 4.4                | 3.760                | .3885        | 4.237                | .3374                   | 4.313    | .2854                   | 3.928                | .2396         |  |
| 4.6                | 4.060                | .4172        | 4.732                | .3701                   | 4.851    | •3186                   | 4.655                | .2706         |  |
| 4.7                | 4.342                | .4323        | 5.257                | .3881                   | 5.570    | •3373                   | 5.485                | .2888         |  |
| 4.8                | 4.868                | .4489        | 6.209                | .4087                   | 6.916    | •3597                   | 6.966                | .3111         |  |
| 4.9                | 5.708                | .4679        | 8.068                | .4343                   | 9.587    | •3893                   | 10.303               | .3421         |  |
| 5.0                | 10.027               | .4962        | 21.540               | .4876                   | 37.270   | •4734                   | 57.224               | .4632         |  |
| 5.1                | 7.689                | .5281        | 13.395               | •5504                   | 19.442   | •5752                   | 25.499               | .6115         |  |
| 5.2                | 5.825                | .5524        | 8.470                | •5897                   | 10.603   | •6291                   | 12.108               | .6790         |  |
| 5.3                | 4.916                | .5718        | 6.320                | •6162                   | 7.162    | •6610                   | 7.460                | .7141         |  |
| 5.4                | 4.444                | .5886        | 5.270                | •6371                   | 5.642    | •6840                   | 5.520                | .7373         |  |
| 5.5                | 4.065                | .6040        | 4.652                | •6549                   | 4.812    | •7027                   | 4.584                | .7555         |  |
| 5.6                | 3.546                | .6176        | 3.976                | .6704                   | 3.875    | .7183                   | 3.605                | .7701         |  |
| 5.8                | 3.300                | .6430        | 3.230                | .6971                   | 3.261    | .7435                   | 2.847                | .7927         |  |
| 6.0                | 3.193                | .6659        | 3.124                | .7196                   | 2.882    | .7653                   | 2.553                | .8121         |  |
| 6.5                | 2.797                | .7183        | 2.713                | .7696                   | 2.405    | .8100                   | 2.070                | .8505         |  |
| 7.0                | 2.629                | .7661        | 2.321                | .8126                   | 2.020    | .8476                   | 1.678                | .8816         |  |
| 8.0                | 2.293                | .8526        | 1.846                | .8848                   | 1.566    | .9082                   | 1.230                | .9305         |  |
| 9.0                | 2.126                | .9306        | 1.594                | .9458                   | 1.342    | .9590                   | .951                 | .9683         |  |
| 10.0               | 1.902                | .9948        | 1.510                | .9959                   | 1.063    | .9971                   | .839                 | .9977         |  |
| 10.1               | .070                 | .9998        | .056                 | .9999                   | .039     | .9999                   | .031                 | .9999         |  |
| 10.3               | 0                    | 1.0000       | 0                    | 1.0000                  | 0        | 1.0000                  | 0                    | 1.0000        |  |

21,20

Table 21.10.--(Continued)

.....

 $T_c = 1.5$  hours

| Serial<br>Q <sub>l</sub> /0 | No.: 5<br>Q <sub>10</sub> : 0 | .6                       | 6<br>0.              | 7              | 7<br>0.              | 7<br>0.8          |                      | 9              |
|-----------------------------|-------------------------------|--------------------------|----------------------|----------------|----------------------|-------------------|----------------------|----------------|
| Time                        | PSH                           | PSMC                     | PSH                  | PSMC           | PSH                  | PSMC              | PSH                  | PSMC           |
| days                        | cfs/AQ <sub>10</sub>          | <u> Q/Q<sub>10</sub></u> | cfs/AQ <sub>10</sub> | <u> </u>       | cfs/AQ <sub>10</sub> | Q/Q <sub>10</sub> | cfs/AQ <sub>10</sub> | <u> </u>       |
| 0                           | 0                             | 0                        | 0                    | 0              | 0                    | 0                 | 0                    | 0              |
| .1                          | •528                          | .0009                    | •352                 | .0006          | .198                 | .0004             | .088                 | .0002          |
| .5                          | •671                          | .0102                    | •470                 | .0068          | .280                 | .0040             | .140                 | .0019          |
| 2.0                         | • (94<br>• 922                | •0252<br>•0534           | •559<br>•642         | •0164<br>•0373 | •990<br>•442         | .0095<br>.0240    | .160                 | .0047<br>.0113 |
| 3.0                         | 1.225                         | .0929                    | .867                 | .0654          | •587                 | .0428             | .302                 | .0203          |
| 3.5                         | 1.482                         | .1186                    | 1.113                | .0844          | •671                 | .0546             | .390                 | .0268          |
| 4.0                         | 2.014                         | .1533                    | 1.454                | .1095          | 1•062                | .0723             | .531                 | .0359          |
| 4.2                         | 2.808                         | .1702                    | 2.034                | .1222          | 1•650                | .0826             | .838                 | .0412          |
| 4.4                         | 3.374                         | .1918                    | 2.855                | .1400          | 1•678                | .0946             | .974                 | .0479          |
| 4.6                         | 4.154                         | .2191                    | 3.405                | .1621          | 2.442                | .1096             | 1.270                | .0555          |
| 4.7                         | 4.960                         | .2354                    | 4.162                | .1757          | 3.055                | .1194             | 1.660                | .0607          |
| 4.8                         | 6.567                         | .2561                    | 5.627                | .1932          | 4.179                | .1324             | 2.317                | .0678          |
| 4.9                         | 10.131                        | .2860                    | 9.071                | .2195          | 6.888                | .1522             | 3.956                | .0790          |
| 5.0                         | 81.384                        | .4500                    | 109.748              | .4323          | 142.265              | .4191             | 179.016              | .4063          |
| 5.1                         | 31.367                        | .6520                    | 36.714               | •6945          | 41.728               | .7483             | 45.898               | .8086          |
| 5.2                         | 12.872                        | .7312                    | 13.042               | •7836          | 12.441               | .8452             | 11.085               | .9105          |
| 5.3                         | 7.150                         | .7671                    | 6.332                | •8183          | 5.140                | .8767             | 3.430                | .9364          |
| 5.4                         | 5.069                         | .7890                    | 4.242                | •8372          | 3.117                | .8915             | 1.704                | .9456          |
| 5.5                         | 4.112                         | .8054                    | 3.366                | •8508          | 2.426                | .9014             | 1.298                | .9510          |
| 5.6                         | 2.998                         | .8182                    | 2.554                | .8614          | 1.696                | .9088             | •909                 | •9550          |
| 5.8                         | 2.554                         | .8379                    | 1.976                | .8770          | 1.406                | .9195             | •805                 | •9605          |
| 6.0                         | 2.028                         | .8543                    | 1.622                | .8897          | 1.088                | .9286             | •569                 | •9652          |
| 6.5                         | 1.678                         | .8853                    | 1.371                | .9152          | .929                 | .9459             | •426                 | •9734          |
| 7.0                         | 1.342                         | .9103                    | 1.007                | .9344          | .671                 | .9586             | •314                 | •9796          |
| 8.0                         | •924                          | .9481                    | .699                 | .9626          | .420                 | .9765             | .224                 | .9887          |
| 9.0                         | •727                          | .9769                    | .532                 | .9840          | .308                 | .9897             | .168                 | .9953          |
| 10.0                        | •587                          | .9984                    | .420                 | .9989          | .258                 | .9993             | .118                 | .9997          |
| 10.1                        | •022                          | 1.0000                   | .016                 | 1.0000         | .009                 | 1.0000            | .004                 | 1.0000         |
| 10.3                        | 0                             | 1.0000                   | 0                    | 1.0000         | 0                    | 1.0000            | 0                    | 1.0000         |

Table 21.10.--(Continued)

 $T_c = 3$  hours

| Serial<br>Q1/0 | No.,: 9<br>210 : 0   | .2       | 10<br>0.             | 3        | 11<br>0              | •4                       | 12<br>0.             | 5             |
|----------------|----------------------|----------|----------------------|----------|----------------------|--------------------------|----------------------|---------------|
| Time           | PSH                  | PSMC     | PSH                  | PSMC     | PSH                  | PSMC                     | PSH                  | PSMC          |
| days           | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> Q/Q<sub>10</sub></u> | cfs/AQ <sub>10</sub> | <u>Q/Q</u> 10 |
| 0              | 0                    | 0        | 0                    | 0        | 0                    | 0                        | 0                    | 0             |
| •1             | 1.034                | .0019    | •775                 | .0014    | •574                 | .0010                    | .460                 | .0008         |
| •5             | 1.984                | .0277    | 1.488                | .0207    | 1•102                | .0153                    | .882                 | .0122         |
| 1.0            | 2.097                | .0654    | 1.572                | .0490    | 1•269                | .0377                    | .938                 | .0290         |
| 2.0            | 2.207                | .1445    | 1.821                | .1128    | 1•434                | .0872                    | 1.186                | .0686         |
| 3.0            | 2.483                | •2319    | 2.178                | .1870    | 1.844                | .1476                    | 1.490                | .1185         |
| 3.5            | 2.703                | •2803    | 2.455                | .2304    | 2.175                | .1856                    | 1.820                | .1501         |
| 4.0            | 3.226                | •3336    | 2.951                | .2819    | 2.702                | .2322                    | 2.372                | .1909         |
| 4.3            | 3.515                | •3697    | 3.687                | .3172    | 3.516                | .2657                    | 3.283                | .2214         |
| 4.6            | 3.982                | •4110    | 4.599                | .3630    | 4.687                | .3114                    | 4.455                | .2638         |
| 4.8            | 4.607                | .4419    | 5.770                | .4001    | 6.321                | •3505                    | 6.315                | •3020         |
| 4.9            | 5.310                | .4600    | 7.265                | .4238    | 8.462                | •3774                    | 8.934                | •3296         |
| 5.0            | 8.383                | .4850    | 16.609               | .4674    | 27.323               | •4424                    | 40.542               | •4196         |
| 5.1            | 8.061                | .5150    | 15.002               | .5250    | 23.244               | •5344                    | 32.577               | •5526         |
| 5.2            | 6.429                | .5414    | 10.246               | .5710    | 13.995               | •6022                    | 17.510               | •6436         |
| 5.3            | 5.305                | .5628    | 7.384                | .6031    | 9.038                | .6441                    | 10.235               | .6940         |
| 5.4            | 4.654                | .5810    | 5.842                | .6272    | 6.587                | .6725                    | 6.862                | .7251         |
| 5.5            | 4.194                | .5972    | 4.926                | .6468    | 5.225                | .6940                    | 5.100                | .7468         |
| 5.6            | 3.708                | .6116    | 4.214                | .6635    | 4.227                | .7112                    | 3.989                | .7634         |
| 5.7            | 3.583                | .6249    | 3.874                | .6782    | 3.631                | .7255                    | 3.293                | .7766         |
| 5.8            | 3.367                | .6376    | 3.406                | .6915    | 3.331                | •7382                    | 2.940                | .7880         |
| 6.0            | 3.143                | .6610    | 3.095                | .7148    | 2.905                | •7607                    | 2.581                | .8079         |
| 6.5            | 2.762                | .7140    | 2.677                | .7654    | 2.374                | •8063                    | 2.042                | .8473         |
| 7.0            | 2.593                | .7620    | 2.291                | .8090    | 2.000                | •8444                    | 1.656                | .8790         |
| 7.5            | 2.428                | .8071    | 2.069                | .8477    | 1.712                | •8770                    | 1.407                | .9057         |
| 8.0            | 2.262                | .8490    | 1.821                | .8819    | 1.545                | .9058                    | 1.214                | .9286         |
| 9.0            | 2.097                | •9273    | 1.573                | .9433    | 1.324                | .9569                    | .938                 | .9669         |
| 10.0           | 1.877                | •9919    | 1.490                | .9936    | 1.050                | .9955                    | .829                 | .9964         |
| 10.1           | .280                 | •9991    | .222                 | .9993    | .156                 | .9995                    | .123                 | .9996         |
| 10.7           | 0                    | •9991    | 0                    | 1.0000   | 0                    | 1.0000                   | Ò                    | 1.0000        |

Table 21 10.--(Continued)

| $T_{\sim}$ | = | 3 | hours |
|------------|---|---|-------|
|            |   | - |       |

| Serial<br>Q <sub>1</sub> /Q | No.: 13<br>10 : 0,                | •6                                    | 14                                | •7                                    | 15<br>0.                          | .8                                    | 16<br>0.                          | 9                                     |
|-----------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|
| Time                        | PSH                               | PSMC                                  | PSH                               | PSMC                                  | PSH                               | PSMC                                  | PSH                               | PSMC                                  |
| days                        | cfs/AQ10                          | <u>Q/Q<sub>10</sub></u>               | <u>cfs/AQ<sub>10</sub></u>        | <u>Q/Q10</u>                          | cfs/AQ <sub>10</sub>              | <u> </u>                              | cfs/AQ <sub>10</sub>              | <u> Q/Q<sub>10</sub></u>              |
| 0<br>.5<br>1.0<br>2.0       | 0<br>•345<br>•661<br>•741<br>•906 | 0<br>.0006<br>.0092<br>.0221<br>.0520 | 0<br>•230<br>•455<br>•550<br>•630 | 0<br>.0004<br>.0061<br>.0156<br>.0363 | 0<br>•129<br>•274<br>•318<br>•428 | 0<br>.0002<br>.0036<br>.0090<br>.0234 | 0<br>•057<br>•137<br>•165<br>•208 | 0<br>.0001<br>.0017<br>.0045<br>.0110 |
| 3.0                         | 1.200                             | .0910                                 | .855                              | .0641                                 | •579                              | .0420                                 | .290                              | .0198                                 |
| 3.5                         | 1.462                             | .1164                                 | 1.090                             | .0827                                 | .662                              | .0536                                 | .382                              | .0262                                 |
| 4.0                         | 1.986                             | .1502                                 | 1.434                             | .1073                                 | 1.044                             | .0707                                 | .524                              | .0351                                 |
| 4.3                         | 2.802                             | .1762                                 | 2.305                             | .1270                                 | 1.626                             | .0860                                 | .892                              | .0431                                 |
| 4.6                         | 3.961                             | .2131                                 | 3.220                             | .1573                                 | 2.277                             | .1062                                 | 1.160                             | .0538                                 |
| 4.8                         | 5.881                             | .2477                                 | 5.004                             | .1861                                 | 3.699                             | .1271                                 | 2.035                             | .0650                                 |
| 4.9                         | 8.682                             | .2741                                 | 7.686                             | .2091                                 | 5.803                             | .1444                                 | 3.303                             | .0746                                 |
| 5.0                         | 56.240                            | .3920                                 | 74.415                            | .3581                                 | 94.971                            | .3272                                 | 118.066                           | .2947                                 |
| 5.1                         | 42.862                            | .5720                                 | 53.883                            | .5910                                 | 65.740                            | .6187                                 | 78.137                            | .6504                                 |
| 5.2                         | 20.664                            | .6874                                 | 23.462                            | .7314                                 | 25.834                            | .7848                                 | 27.664                            | .8423                                 |
| 5.3                         | 10.890                            | •7447                                 | 11.095                            | •7941                                 | 10.896                            | .8514                                 | 10.182                            | •9109                                 |
| 5.4                         | 6.744                             | •7767                                 | 6.234                             | •8256                                 | 5.412                             | .8810                                 | 4.240                             | •9370                                 |
| 5.5                         | 4.68 <b>6</b>                     | •7975                                 | 3.953                             | •8441                                 | 2.980                             | .8962                                 | 1.764                             | •9479                                 |
| 5.6                         | 3.438                             | •8122                                 | 2.890                             | •8565                                 | 1.996                             | .9053                                 | 1.073                             | •9531                                 |
| 5.7                         | 2.871                             | •8237                                 | 2.282                             | •8659                                 | 1.580                             | .9118                                 | .793                              | •9564                                 |
| 5.8                         | 2.618                             | .8337                                 | 2.033                             | .8737                                 | 1.436                             | •9172                                 | .781                              | •9593                                 |
| 6.0                         | 2.113                             | .8509                                 | 1.659                             | .8870                                 | 1.149                             | •9267                                 | .587                              | •9642                                 |
| 6.5                         | 1.656                             | .8827                                 | 1.356                             | .9130                                 | .924                              | •9445                                 | .427                              | •9728                                 |
| 7.0                         | 1.325                             | .9082                                 | .995                              | .9328                                 | .662                              | •9576                                 | .317                              | •9791                                 |
| 7.5                         | 1.080                             | .9291                                 | .802                              | .9484                                 | .525                              | •9678                                 | .250                              | •9841                                 |
| 8.0                         | •915                              | .9467                                 | .690                              | .9615                                 | .414                              | •9759                                 | .221                              | .9883                                 |
| 9.0                         | •719                              | .9758                                 | .528                              | .9832                                 | .304                              | •9892                                 | .166                              | .9951                                 |
| 10.0                        | •582                              | .9975                                 | .415                              | .9982                                 | .262                              | •9989                                 | .123                              | .9995                                 |
| 10.1                        | •086                              | .9997                                 | .062                              | .9998                                 | .038                              | •9999                                 | .018                              | .9999                                 |
| 10.7                        | 0                                 | 1.0000                                | 0                                 | 1.0000                                | 0                                 | •9999                                 | 0                                 | 1.0000                                |

Table 21.10.--(Continued)

 $T_c = 6$  hours

| Serial<br>Q1/0 | No.: 17<br>R10 : 0 | .2             | 18<br>0.3 | 3        | 19<br>0.             | 4        | 20<br>0              | •5       |
|----------------|--------------------|----------------|-----------|----------|----------------------|----------|----------------------|----------|
| Time           | PSH                | PSMC           | PSH       | PSMC     | PSH                  | PSMC     | PSH                  | PSMC     |
| days           | cfs/AQ10           | <u> Q/Q</u> 10 | cfs/AQ10  | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> |
| 0              | 0                  | 0              | 0         | 0        | 0                    | 0        | 0                    | 0        |
| •2             | 1.038              | .0031          | .779      | .0023    | •577                 | .0017    | .461                 | .0014    |
| •5             | 1.862              | .0205          | 1.397     | .0154    | 1•035                | .0114    | .828                 | .0091    |
| 1•0            | 2.063              | .0575          | 1.547     | .0431    | 1•244                | .0329    | .923                 | .0255    |
| 2•0            | 2.174              | .1361          | 1.792     | .1059    | 1•410                | .0818    | 1.164                | .0641    |
| 3.0            | 2.444              | .2225          | 2.136     | .1787    | 1.800                | .1407    | 1.462                | .1128    |
| 3.6            | 2.714              | .2800          | 2.489     | .2302    | 2.215                | .1854    | 1.876                | .1500    |
| 4.0            | 3.006              | .3220          | 2.886     | .2709    | 2.636                | .2222    | 2.314                | .1820    |
| 4.3            | 3.284              | .3571          | 3.349     | .3044    | 3.178                | .2536    | 2.944                | .2102    |
| 4.6            | 3.801              | .3964          | 4.282     | .3466    | 4.310                | .2950    | 4.029                | .2485    |
| 4.8            | 4.196              | .4258          | 5.046     | .3807    | 5.340                | •3300    | 5.225                | .2820    |
| 4.9            | 4.653              | .4421          | 5.951     | .4010    | 6.616                | •3521    | 6.721                | .3040    |
| 5.0            | 5.991              | .4618          | 9.630     | .4298    | 13.534               | •3892    | 17.748               | .3491    |
| 5.1            | 7.547              | .4868          | 14.087    | .4736    | 22.175               | •4551    | 31.771               | .4404    |
| 5.2            | 7.180              | .5141          | 12.665    | .5230    | 18.923               | •5309    | 25.805               | .5464    |
| 5.3            | 6.166              | •5388          | 9.785     | •5645    | 13.444               | •5906    | 17.306               | .6254    |
| 5.4            | 5.330              | •5601          | 7.628     | •5967    | 9.677                | •6332    | 11.430               | .6778    |
| 5.5            | 4.723              | •5786          | 6.186     | •6222    | 7.310                | •6645    | 8.067                | .7138    |
| 5.6            | 4.212              | •5952          | 5.169     | •6432    | 5.727                | •6886    | 5.954                | .7396    |
| 5.8            | 3.587              | •6237          | 3.923     | •6764    | 3.881                | •7233    | 3.641                | .7741    |
| 6.0            | 3.188              | .6486          | 3.214     | •7023    | 3.109                | .7487    | 2.784                | •7972    |
| 6.5            | 2.757              | .7034          | 2.662     | •7552    | 2.372                | .7971    | 2.040                | •8394    |
| 7.0            | 2.566              | .7522          | 2.282     | •8002    | 2.000                | .8367    | 1.652                | •8727    |
| 7.5            | 2.403              | .7978          | 2.052     | •8398    | 1.706                | .8704    | 1.400                | •9003    |
| 8.0            | 2.240              | .8404          | 1.808     | •8750    | 1.532                | .8999    | 1.207                | •9239    |
| 9.0            | 2.071              | .9193          | 1.559     | •9373    | 1.312                | .9519    | •933                 | .9633    |
| 9.9            | 1.862              | .9847          | 1.475     | •9879    | 1.052                | .9914    | •828                 | .9932    |
| 10.1           | .872               | .9955          | .692      | •9965    | .490                 | .9975    | •386                 | .9980    |
| 10.3           | .198               | .9991          | .158      | •9992    | .111                 | .9995    | •040                 | .9998    |
| 10.8           | 0                  | 1.0000         | 0         | 1.0000   | 0                    | 1.0000   | 0                    | 1.0000   |

| Serial            | No.: 21                 |                  | 22                    | <u>.</u>          | 23                   |                 | 24               |                         |
|-------------------|-------------------------|------------------|-----------------------|-------------------|----------------------|-----------------|------------------|-------------------------|
| Q <sub>1</sub> /0 | <sup>2</sup> 10 ∶ 0     | .6               | 0.                    | 7                 | 0.8                  | 3               | 0.               | 9                       |
| Time              | PSH                     | PSMC             | PSH                   | PSMC              | PSH                  | PSMC            | PSH              | PSMC                    |
| days              | cfs/AQ <sub>10</sub>    | Q/Q10            | cfs/AQ10              | <u>Q/Q10</u>      | cfs/AQ <sub>10</sub> | <u> Q/Q10</u>   | cfs/AQ10         | <u>q/q<sub>10</sub></u> |
| 0                 | 0                       | 0                | 0                     | 0                 | 0                    | 0               | 0                | 0                       |
| •2                | •346                    | .0010            | •231                  | .0007             | .130                 | .0004           | •058             | .0002                   |
| •2                | •021<br>71.0            | 00000<br>01.03   | •410<br>-535          | •0047<br>0135     | •204<br>-302         | -0020<br>-0079  | .160             | -0012<br>-0039          |
| 2.0               | .881                    | .0486            | • <i>6</i> 10         | •0340             | •902<br>•412         | .0218           | •194             | .0102                   |
| 3.0               | 1.167                   | .0865            | <b>.</b> 837          | .0609             | •566                 | .0398           | •27 <u>4</u>     | .0188                   |
| 3.6               | 1.518                   | .1163            | 1.123                 | .0827             | •708<br>• ool        | •0536           | •395             | .0262                   |
| 4•0<br>九 ろ        | 1.9 <u>9</u> 4<br>2.527 | •1420<br>1666    | 1032                  | -1019<br>1106     | 1,004<br>1,180       | 0000.<br>1080   | •JTO<br>781      | +CCO+<br>このりの           |
| 4.6               | 3.539                   | .1997            | 2.865                 | .1464             | 1.961                | •0987           | •999             | •0500                   |
| 4.8               | 4.747                   | .2295            | 3•973                 | .1709             | 2.887                | .1161           | 1.555            | .0591                   |
| 4.9               | 6.335                   | •2499            | 5.461                 | .1883             | 4.056                | .1289           | 2.255            | .0661                   |
| 5.0<br>5.1        | 22.275                  | •3020<br>haas    | 27.118<br>55.078      | •2482<br>7008     | 52.100               | •1900<br>7877   | 37.622<br>81.005 | •1394<br>z6z):          |
| 5.2               | 33.204                  | •422)<br>•5625   | 41.011                | •5990<br>•5770    | 49.241               | •5993           | 57.738           | .6245                   |
| 5.3               | 20.462                  | .6613            | 23 <b>.</b> 735       | .6961             | 26.833               | •7392           | 29.654           | .7851                   |
| 5-4               | 12.851                  | •7226            | 13.975                | •7655             | 14.846               | .8159           | 15.379           | .8679                   |
| うり                | 8,521                   | •7619<br>7885    | 8.668<br>5.678        | •8072<br>8775     | 8.572<br>5.100       | •8589<br>00113  | 8.194            | •9112                   |
| 5.8               | 3.326                   | .8212            | 2.818                 | •8634             | 2.199                | •9096           | 1.490            | •9546                   |
| 6.0               | 2.389                   | .8417            | 1.859                 | .8798             | 1.326                | .9216           | .680             | •9616                   |
| 6.5               | 1.655                   | <b>.</b> 8764    | 1.360                 | •9078             | •931                 | •9409           | •438             | .9711                   |
| γ.0<br>7.5        | 1.322                   | •9031<br>oolio   | 1.002                 | •9290             | •666                 | •9551           | •327<br>057      | •9779                   |
| 8.0               | .918                    | •9249<br>•9431   | •004<br>•687          | •9400<br>•9588    | • <i>929</i><br>•415 | •9050<br>•9743  | .221             | •9092<br>•9875          |
| 9.0               | .718                    | •9730            | •533                  | •9812             | •305                 | •9880           | .165             | •9944                   |
| 9.9               | •586                    | •9952            | .416                  | •9966             | .271                 | •9978           | .129             | •9990                   |
| 10.1<br>10.3      | •272<br>060             | .9900<br>0007    | •194<br>old           | •9990             | .122                 | •9988           | •057             | •9997                   |
| 10.8              | 0                       | •99991<br>1.0000 | •0 <del>44</del><br>0 | • 99990<br>1.0000 | 0                    | •7777<br>1.0000 | 0                | •99999<br>1.0000        |

.

• •

 $T_c = 6$  hours

Table 21.10.--(Continued)

|                                 |                    |               |                      |                         |                      | Τc            | = 12 hou             | rs            |
|---------------------------------|--------------------|---------------|----------------------|-------------------------|----------------------|---------------|----------------------|---------------|
| Serial No. : 25<br>Q1/Q10 : 0.2 |                    | .2            | 26<br>0.             | 3                       | 27<br>0.             | 4             | 28<br>0.             | 5             |
| Time                            | PSH                | PSMC          | PSH                  | PSMC                    | PSH                  | PSMC          | PSH                  | PSMC          |
| days                            | cfs/AQ10           | <u>Q/Q</u> 10 | cfs/AQ <sub>10</sub> | <u>q/q<sub>10</sub></u> | cfs/AQ <sub>10</sub> | <u>9/9</u> 10 | cfs/AQ <sub>10</sub> | <u>e/e</u> 10 |
| 0                               | 0                  | 0             | 0                    | 0                       | 0                    | 0             | 0                    | 0             |
| •3                              | .678               | .0026         | .509                 | .0019                   | •377                 | .0014         | •302                 | .0011         |
| •6                              | 1.577              | .0158         | 1.183                | .0118                   | •879                 | •0088         | .701                 | •0070         |
| 1.0                             | 1.967              | .0426         | 1.475                | .0319                   | 1.165                | .0242         | <b>.</b> 878         | .0189         |
| 2.0                             | 2.156              | .11.98        | 1.764                | •0926                   | 1.379                | .0714         | 1.124                | •0557         |
| 3.0                             | 2.408              | .2043         | 2.075                | .1631                   | 1.726                | .1278         | 1.414                | .1022         |
| 4.0                             | 2.842              | .3006         | 2.748                | .2502                   | 2.486                | .2035         | 2.164                | .1658         |
| 4.3                             | 3.105              | •3336         | 2,992                | .2818                   | 2.979                | .2325         | 2.507                | .1913         |
| 4.6                             | 3.485              | .3701         | 3.711                | •3187                   | 3.630                | <b>.</b> 2677 | 3.345                | •2234         |
| 4.8                             | 3.804              | •3971         | 4.310                | •3483                   | 4.377                | .2971         | 4.148                | •2508         |
| 4.9                             | 4.043              | .4116         | 4.768                | .3651                   | 4.995                | .3144         | 4.855                | <b>.</b> 2674 |
| 5.0                             | 4.540              | •4275         | 5.944                | •3849                   | 6.976                | .3365         | 7•736                | •2907         |
| 5.1                             | 5.388              | •4459         | 8.174                | .4110                   | 11.052               | .3698         | 14.079               | •3309         |
| 2.2                             | 6.200              | .4673         | 10.329               | •4452                   | 15.007               | •4179         | 20.236               | •3942         |
| 5.3                             | 6.451              | •4908         | 10.879               | •4844                   | 15.865               | •4749         | 21.358               | •4710         |
| 5.4                             | 6.163              | .5141         | 9.984                | <b>.</b> 5230           | 14.080               | •5302         | 18.384               | •5443         |
| 5.5                             | 5.659              | •5360         | 8,609                | •5574                   | 11.562               | •5776         | 14.463               | •6049         |
| 5.6                             | 5.157              | •5561         | 7.374                | •5870                   | 9.437                | .6164         | 11.327               | .6525         |
| 5.8                             | 4.298              | •5910         | 5.483                | .6342                   | 6.345                | •6741         | 7.000                | .7192         |
| 6.0                             | 3.706              | .6205         | 4.796                | •6533                   | 4.558                | •7138         | 4.649                | .7615         |
| 6.2                             | 3.331              | .6465         | 3.500                | .6985                   | 3.519                | •7434         | 3.366                | •7907         |
| 6.5                             | 2.940              | .6812         | 2.893                | •7335                   | 2.684                | .7772         | 2.389                | .8220         |
| 6.8                             | 2.717              | .71.26        | 2.569                | •7638                   | 2.286                | .8046         | 1.948                | .8457         |
| 7•4                             | 2.477              | .7702         | 2.161                | .8159                   | 1.848                | .8502         | 1.519                | .8837         |
| 8.0                             | 2.283              | .8232         | 1.875                | .8608                   | 1,582                | .8880         | 1.262                | •9144         |
| 9.0                             | 2.086              | •9036         | 1.601                | •9253                   | 1.341                | .9418         | •977                 | •9559         |
| 10.0                            | 1.826              | ·9772         | 1.439                | .9820                   | 1.053                | •9870         | .822                 | 9898          |
| 10.3                            | •8 <del>)1)1</del> | •9926         | .667                 | .9942                   | 480                  | •9958         | •377                 | .9967         |
| 10.6                            | <b>.</b> 239       | •9981         | .189                 | •9985                   | .136                 | •9989         | .107                 | •9991         |
| 11.4                            | 0                  | 1.0000        | 0                    | 1.0000                  | 0                    | 1,0000        | 0                    | 1.0000        |

٠,

21.26

|            |                      |                   |                  |               |                            |                | $T_c = 12 h$         | ours           |
|------------|----------------------|-------------------|------------------|---------------|----------------------------|----------------|----------------------|----------------|
| Serial     | No.: 29              |                   | 30               |               | 31                         |                | 32                   | <u> </u>       |
| $Q_1/2$    | ९ <sub>10</sub> : ०  | •6                | Ο.               | 7             | Ο.                         | 8              | 0.                   | 9              |
| Time       | PSH                  | PSMC              | PSH              | PSMC          | PSH                        | PSMC           | PSH                  | PSMC           |
| days       | cfs/AQ <sub>10</sub> | <u>Q/Q10</u>      | <u>cfs/AQ</u> 10 | <u> </u>      | <u>cfs/AQ<sub>10</sub></u> | <u>q/q</u> 10  | cfs/AQ <sub>lC</sub> | <u> </u>       |
| 0          | 0                    | 0                 | 0                | 0             | 0                          | 0              | 0                    | 0              |
| •3         | •226                 | <b>.0008</b>      | .151             | •0006         | .086                       | •0003          | <b>.</b> 038         | .0001          |
| •6         | •526                 | •0052             | •356             | .0035         | .212                       | .0020          | .102                 | .0010          |
| 1.0        | •672<br>01-17        | •0142             | •490             | .0098         | •281                       | •0058          | •145                 | .0028          |
| 2.0        | •04 (                | •0423             | •202             | .0296         | •403                       | .0188          | .180                 | .0089          |
| 3.0        | 1.120                | .0781             | .801             | <b>.</b> 0549 | •539                       | .0358          | .259                 | .01.69         |
| 4.0        | 1.794                | .1294             | 1.303            | •0922         | .902                       | .0601          | .470                 | .0296          |
| 4.3        | 2.121                | .1507             | 1.574            | .1078         | 1.197                      | .0714          | .622                 | .0354          |
| 4.6<br>h 0 | 2.882                | .1780             | 2.315            | .1290         | 1.594                      | .0868          | .848                 | .0436          |
| 4.8        | 3.671                | .2020             | 2.999            | •1484         | 2.114                      | •1005          | Totts                | .0507          |
| 4.9        | 4.396                | •2169             | 3.664            | .1607         | 2.644                      | .1090          | 1.421                | <b>.</b> 0554  |
| 5.0        | 8.270                | .2402             | 8.608            | .1833         | 8.709                      | .1299          | 8.691                | .0740          |
| 5.1        | 17.276               | •2873             | 20.646           | •2372         | 24.136                     | .1904          | 27.865               | .1412          |
| 5.2        | 25.994               | • 30'(1<br>1. CEZ | 52.255           | • <i>5547</i> | 38.973                     | .3066<br>hEOF  | 46.207               | •2776          |
| 2•2        | 2(.)02               | ·4075             | 22.021           | •496L         | 40.402                     | •4527          | 4(•)11               | •4500          |
| 5.4        | 22.834               | •5577             | 27.414           | •5686         | 32.115                     | •5862          | 36.878               | .6053          |
| 5.5        | 17.279               | .6317             | 20.012           | .6560         | 22.676                     | .6871          | 25.213               | •7196          |
| 5.6        | 13.048               | .6876             | 14.617           | .71.98        | 16.047                     | •7584          | 17.313               | .7978          |
| 5.8        | 7.474                | •7620             | 7.808            | .8007         | 7.959                      | •8447<br>•9991 | 7.993                | •0004          |
| 0.0        | 4.001                | •0070             | 4.006            | ·0470         | 4.2/2                      | •0004          | 2.900                | •9506          |
| 6.2        | 3.122                | .8341             | 2.813            | .8714         | 2.431                      | .9125          | 1.968                | <u>.9518</u>   |
| 6.5        | 2.029                | .8618             | 1.724            | <b>.</b> 8957 | 1.290                      | ·9323          | •795                 | •9664          |
| 6.8        | 1.582                | .8814             | 1.271            | •9119         | .858                       | •9436          | •413                 | •9723          |
| 7.4        | 1.203                | •9 <u>11</u> 9    | •907             | •9355         | •598                       | •9594          | •294                 | •9800          |
| 0.0        | •972                 | •9000             | • (24            | •9534         | •450                       | •9709          | •234                 | •9857          |
| 9.0        | •752                 | •9674             | •560             | •9770         | •330                       | •9855          | •174                 | • <b>99</b> 32 |
| 10.0       | •591                 | •9928             | •415             | •9949         | •269                       | •9967          | .125                 | •9985          |
| 10.3       | .268                 | •9977             | .189             | •9984         | .121                       | •9990          | .056                 | •9995          |
|            | •076                 | •9994             | •054             | •9996         | .034                       | •9997          | •016                 | •9999          |
| ⊥⊥.4       | U                    | T*0000            | 0                | T*0000        | U                          | T*0000         | 0                    | T*0000         |

|                            |                                |                |                      |               |                      |               | $T_c = 18 h$               | ours          |
|----------------------------|--------------------------------|----------------|----------------------|---------------|----------------------|---------------|----------------------------|---------------|
| Serial<br>Q <sub>1</sub> / | No.: 33<br>Q <sub>10</sub> : 0 | 5<br>).2       | 34<br>0.             | 3             | - 35<br>0.           | <u>)</u>      | 36<br>0.                   | <b>-</b><br>5 |
| Time                       | PSH                            | PSMC           | PSH                  | PSMC          | PSH                  | PSMC          | PSH                        | PSMC          |
| days                       | cfs/AQ10                       | <u>9/910</u>   | cfs/AQ <sub>10</sub> | <u>Q/Q</u> 10 | cfs/AQ <sub>10</sub> | <u>q/q</u> 10 | <u>cfs/AQ<sub>10</sub></u> | <u>0/0</u> 10 |
| 0                          | 0                              | 0              | 0                    | 0             | 0                    | 0             | 0                          | 0             |
| •3                         | <b>.</b> 277                   | .0010          | <b>.</b> 208         | •0007         | .154                 | .0005         | .123                       | .0004         |
| •6                         | 1.095                          | •0086          | .821                 | .0064         | .609                 | •0047         | •487                       | .0038         |
| 1.0                        | 1.736                          | .0302          | 1.302                | .0226         | 1.008                | .0170         | •774                       | .0134         |
| 2.0                        | 2.124                          | <b>.</b> 1039  | 1.716                | .0798         | 1.334                | •0614         | 1.070                      | •0478         |
| 3.0                        | 2.359                          | .1867          | 2.004                | .1482         | 1.641                | .1156         | 1.350                      | .0922         |
| 4.0                        | 2.736                          | .2802          | 2.576                | •2311         | 2.298                | .1866         | 1.973                      | .1514         |
| 4.5                        | 3.134                          | • 3543         | 3.092                | •2828         | 2,905                | •2337         | 2,615                      | .1927         |
| 4.9                        | 5.695                          | • <u>5</u> 845 | 4.116                | •3354         | 4.156                | •2848         | 3.928                      | •2397         |
| 5.0                        | 5.970                          | •3987          | 4.720                | •3518         | 5.096                | •3019         | 5.209                      | •2566         |
| 5.1                        | 4.410                          | .4142          | 5.777                | .3712         | 6.896                | •3241         | 7.862                      | .2807         |
| 5.2                        | 4.978                          | .4316          | 7.206                | •3952         | 9.422                | •3542         | 11.690                     | .3168         |
| 5.3                        | 5.502                          | .4510          | 8.529                | 4243          | 11.765               | •3933         | 15.235                     | .3665         |
| 5.4                        | 5.792                          | .4719          | 9.213                | •4571         | 12,920               | .4389         | 16.904                     | 4258          |
| 5.5                        | 5.789                          | •4934          | 9.122                | .4910         | 12.668               | •4862         | 16.399                     | .4872         |
| 5.6                        | 5.571                          | .5144          | 8,512                | •5237         | 11.530               | •5309         | 14.598                     | •5 <u>444</u> |
| 5.7                        | 5.242                          | 5345           | 7.676                | •5536         | 10.043               | •5707         | 12.343                     | 5941          |
| 5.8                        | 4.892                          | •5532          | 6.849                | .5805         | 8.640                | .6052         | 10.299                     | .6359         |
| 5.9                        | 4.566                          | .5708          | 6.122                | .6045         | 7.463                | .6350         | 8.651                      | .6709         |
| 6.0                        | 4.266                          | •5871          | 5.472                | .6259         | 6.451                | .6607         | 7.259                      | .7003         |
| 6.2                        | 3.773                          | .6168          | 4.430                | .6624         | 4.898                | .7023         | 5.185                      | .7458         |
| 6.4                        | 3.413                          | .6434          | 3.726                | .6924         | 3.888                | •7346         | 3.907                      | .7791         |
| 6.7                        | 3.022                          | .6790          | 3.078                | •7299         | 2,972                | .7721         | 2,779                      | .8155         |
| 7.0                        | 2.777                          | .7112          | 2.671                | .7617         | 2,456                | .8020         | 2.176                      | .8427         |
| 7•4                        | 2.570                          | •7507          | 2.306                | •7983         | 2.016                | .8348         | 1.681                      | .8708         |
| 8.0                        | 2.352                          | .8054          | 1.978                | <b>.</b> 8458 | 1.672                | .8753         | 1.352                      | .9041         |
| 9.0                        | 2.117                          | .8876          | 1.662                | .9127         | 1.388                | .9313         | 1.040                      | 9480          |
| 10.0                       | 1.907                          | .9627          | 1.491                | .9707         | 1.134                | .9784         | .874                       | .9832         |
| 10.3                       | 1.375                          | .9816          | 1.082                | .9855         | .797                 | .9894         | .620                       | .9917         |
| 10.7                       | .464                           | ·9944          | •366                 | •9956         | .268                 | .9968         | .209                       | •9975         |
| 11.0                       | .190                           | .9970          | .1LO                 | 20083         | ,109                 | 0088          | 0.85                       | 0000          |
| 12.0                       | 0                              | 1.0000         | 0                    | 1.0000        | 0                    | 1.0000        | 0                          | •777V         |

|                                     |                                                     |                                                         |                                                    |                                                         |                                                   |                                                         | T <sub>c</sub> = 18                               | hours                                                   |
|-------------------------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| Serial No.: 37                      |                                                     |                                                         | 38                                                 |                                                         | 39                                                |                                                         | 40                                                |                                                         |
| Q1/Q10 : 0.6                        |                                                     |                                                         | 0.7                                                |                                                         | 0.8                                               |                                                         | 0•9                                               |                                                         |
| Time                                | PSH                                                 | PSMC                                                    | PSH                                                | PSMC                                                    | PSH                                               | PSMC                                                    | PSH                                               | PSMC                                                    |
| days                                | cfs/AQ <sub>10</sub>                                | <u>q/q<sub>10</sub></u>                                 | cfs/AQ <sub>l0</sub>                               | <u>q/q<sub>10</sub></u>                                 | cfs/AQ <sub>10</sub>                              | Q/Q <sub>10</sub>                                       | <u>cfs/AQ</u> 10                                  | <u> Q/Q10</u>                                           |
| 0<br>.6<br>1.0<br>2.0<br>3.0<br>4.0 | 0<br>.092<br>.365<br>.588<br>.809<br>1.059<br>1.616 | 0<br>.0003<br>.0028<br>.0101<br>.0363<br>.0703<br>.1176 | 0<br>.062<br>.245<br>.418<br>.561<br>.754<br>1.179 | 0<br>.0002<br>.0019<br>.0069<br>.0254<br>.0494<br>.0836 | 0<br>.035<br>.144<br>.244<br>.387<br>.506<br>.789 | 0<br>.0001<br>.0011<br>.0040<br>.0159<br>.0320<br>.0544 | 0<br>.016<br>.068<br>.122<br>.177<br>.241<br>.417 | 0<br>.0000<br>.0005<br>.0019<br>.0076<br>.0151<br>.0266 |
| 4.5                                 | 2.214                                               | .1920                                                   | 1.684                                              | .1090                                                   | 1.228                                             | .0724                                                   | .047                                              | .0480                                                   |
| 4.9                                 | 3.472                                               | .1925                                                   | 2.830                                              | .1410                                                   | 2.004                                             | .0951                                                   | 1.065                                             | .0480                                                   |
| 5.0                                 | 5.102                                               | .2084                                                   | 4.811                                              | .1551                                                   | 4.331                                             | .1068                                                   | 3.740                                             | .0568                                                   |
| 5.1                                 | 8.709                                               | •2338                                                   | 9.462                                              | .1814                                                   | 10.106                                            | .1334                                                   | 10.725                                            | .0835                                                   |
| 5.2                                 | 14.028                                              | •2757                                                   | 16.442                                             | .2292                                                   | 18.910                                            | .1868                                                   | 21.507                                            | .1428                                                   |
| 5.3                                 | 18.934                                              | •3365                                                   | 22.854                                             | .3016                                                   | 26.967                                            | .2713                                                   | 31.324                                            | .2400                                                   |
| 5.4                                 | 21.138                                              | •4104                                                   | 25.608                                             | .3909                                                   | 30.294                                            | .3767                                                   | 35.205                                            | .3625                                                   |
| 5.5                                 | 20.281                                              | •4868                                                   | 24.302                                             | .4828                                                   | 28.455                                            | .4849                                                   | 32.720                                            | .4875                                                   |
| 5.6                                 | 17.690                                              | •5568                                                   | 20.808                                             | •5659                                                   | 23.951                                            | •5814                                                   | 27.092                                            | •5976                                                   |
| 5.7                                 | 14.565                                              | •6162                                                   | 16.726                                             | •6351                                                   | 18.819                                            | •6602                                                   | 20.835                                            | •6858                                                   |
| 5.8                                 | 11.834                                              | •6649                                                   | 13.268                                             | •6904                                                   | 14.589                                            | •7217                                                   | 15.811                                            | •7533                                                   |
| 5.9                                 | 9.716                                               | •7046                                                   | 10.671                                             | •7345                                                   | 11.506                                            | •7698                                                   | 12.251                                            | •8049                                                   |
| 6.0                                 | 7.960                                               | •7372                                                   | 8.536                                              | •7699                                                   | 9.005                                             | •8075                                                   | 9.384                                             | •8447                                                   |
| 6.2                                 | 5.384                                               | .7860                                                   | 5.469                                              | .8210                                                   | 5.475                                             | .8602                                                   | 5.391                                             | .8984                                                   |
| 6.4                                 | 3.847                                               | .8197                                                   | 3.751                                              | .8545                                                   | 3.565                                             | .8930                                                   | 3.308                                             | .9299                                                   |
| 6.7                                 | 2.526                                               | .8542                                                   | 2.311                                              | .8872                                                   | 1.978                                             | .9227                                                   | 1.586                                             | .9558                                                   |
| 7.0                                 | 1.873                                               | .8781                                                   | 1.609                                              | .9084                                                   | 1.260                                             | .9401                                                   | .881                                              | .9689                                                   |
| 7.4                                 | 1.350                                               | .9016                                                   | 1.039                                              | .9275                                                   | .694                                              | .9540                                                   | .341                                              | .9774                                                   |
| 8.0                                 | 1.051                                               | •9278                                                   | .788                                               | •9474                                                   | .503                                              | •9671                                                   | •254                                              | •9838                                                   |
| 9.0                                 | .795                                                | •9613                                                   | .592                                               | •9725                                                   | .361                                              | •9828                                                   | •184                                              | •9918                                                   |
| 10.0                                | .640                                                | •9879                                                   | .446                                               | •9915                                                   | .288                                              | •9946                                                   | •131                                              | •9975                                                   |
| 10.3                                | .447                                                | •9941                                                   | .314                                               | •9958                                                   | .202                                              | •9973                                                   | •094                                              | •9988                                                   |
| 10.7                                | .150                                                | •9982                                                   | .106                                               | •9987                                                   | .068                                              | •9992                                                   | •031                                              | •9996                                                   |
| 11.0                                | .061                                                | •9993                                                   | •043                                               | •9995                                                   | .028                                              | •9997                                                   | .013                                              | •9998                                                   |
| 12.0                                | 0                                                   | 1.0000                                                  | 0                                                  | 1.0000                                                  | 0                                                 | 1.0000                                                  | 0                                                 | 1.0000                                                  |

Table 21.10.--(Continued)

|                                                              |               |                          |                            |                         |                            |               | $T_{c} = 24$         | hours                   |
|--------------------------------------------------------------|---------------|--------------------------|----------------------------|-------------------------|----------------------------|---------------|----------------------|-------------------------|
| Serial No. : 41<br>$\rho_{1}/\rho_{2}$ · $\rho_{2}/\rho_{3}$ |               |                          | 42                         |                         | 43<br>0.4                  |               | <u> </u>             |                         |
| ۰ <u>۲</u> ۰                                                 | ~10 · · ·     |                          |                            |                         |                            |               |                      |                         |
| Time                                                         | PSH           | PSMC                     | PSH                        | PSMC                    | PSH                        | PSMC          | PSH                  | PSMC                    |
| days                                                         | cfs/AQ10      | <u> Q/Q<sub>10</sub></u> | <u>cfs/AQ<sub>10</sub></u> | <u>q/q<sub>10</sub></u> | <u>cfs/AQ<sub>l0</sub></u> | <u>q/q_10</u> | cfs/AQ <sub>10</sub> | <u>q/q<sub>10</sub></u> |
| 0                                                            | 0             | 0                        | 0                          | 0                       | 0                          | 0             | 0                    | 0                       |
| •3                                                           | •132          | .0005                    | •099                       | .0003                   | .073                       | .0002         | •058                 | .0002                   |
| _•8                                                          | 1.108         | .0113                    | •831                       | .0085                   | .622                       | •0063         | •493                 | •0050                   |
| 1.0                                                          | 1.745         | .0452                    | 1.517                      | .0289                   | 1.029                      | •0220         | •785                 | •017L                   |
| 2.0                                                          | 2.058         | .0886                    | ⊥•64⊥                      | •06.(.(                 | 1.273                      | •0521         | 1.007                | •0404                   |
| 3.0                                                          | 2.311         | .1694                    | 1.940                      | .1338                   | 1.567                      | .1041         | 1.290                | .0827                   |
| 4.0                                                          | 2.650         | •2605                    | 2.432                      | •2133                   | 2,138                      | .1711         | 1.813                | .1383                   |
| 4.6                                                          | 3.071         | • 5255                   | 3.016                      | •2728                   | 2.816                      | .2248         | 2.518                | .1850                   |
| 4.9                                                          | · ク•4クク       | <ul> <li>シンシン</li> </ul> | 3.652                      | • 5095                  | 5.585                      | •2599         | 3.323                | •2169                   |
| 2.0                                                          | <b>∮</b> •628 | •3726                    | 4.052                      | •3238                   | 4.167                      | •2742         | 4.074                | •2305                   |
| 5.1                                                          | 3.906         | •3865                    | 4.674                      | •3399                   | 5.165                      | -2914         | 5.474                | .2481                   |
| 5.2                                                          | 4.268         | .4016                    | 5.529                      | •3588                   | 6,600                      | •3131         | 7.565                | .2722                   |
| 2.3                                                          | 4.676         | .4182                    | 6.517                      | .3810                   | 8.296                      | .3406         | 10.076               | •3047                   |
| 2•4                                                          | 5.048         | •4362                    | 7.417                      | •4068                   | 9.843                      | •3741         | 12.364               | •3461                   |
| 2•2                                                          | 5.299         | •4554                    | 8.000                      | •4353                   | 10.820                     | •4122         | 13.771               | •3943                   |
| 5.6                                                          | 5.390         | •4751                    | 8.180                      | .4652                   | 11.081                     | •4526         | 14.095               | •4457                   |
| 5•7                                                          | 5.328         | •4950                    | 7.984                      | •4950                   | 10.690                     | •4928         | 13.448               | •4964                   |
| 5.8                                                          | 5.158         | •5144                    | 7.544                      | •5238                   | 9.904                      | •5308         | 12.247               | •5438                   |
| 5.9                                                          | 4.924         | •5331                    | 6.981                      | •5506                   | 8.936                      | •5656         | 10.817               | •5864                   |
| 6.0                                                          | 4.668         | •5508                    | 6.387                      | •5753                   | 7•950                      | •5967         | 9•397                | .6236                   |
| 6.2                                                          | 4.189         | •5836                    | 5.336                      | .6185                   | 6.302                      | .6491         | 7.119                | .6841                   |
| 6.4                                                          | 3.788         | .6130                    | 4.505                      | .6548                   | 5.060                      | .6909         | 5.471                | •7303                   |
| 6.6                                                          | 3.457         | .6398                    | 3.864                      | •68 <u>57</u>           | 4.114                      | •7246         | 4.240                | •7660                   |
| 6.9                                                          | 3.090         | .6761                    | 3.227                      | •7248                   | 3.216                      | •7648         | 3.120                | .8062                   |
| (•2                                                          | 2.839         | .7089                    | 2.785                      | •7580                   | 2.633                      | •7970         | 2.412                | <b>.</b> 8365           |
| 7.6                                                          | 2.614         | •7492                    | 2.396                      | •7961                   | 2.148                      | .8320         | 1,864                | .8677                   |
| 8.0                                                          | 2.440         | •7866                    | 2.115                      | .8294                   | 1.816                      | •8612         | 1.504                | .8924                   |
| 9.0                                                          | 2.159         | .8711                    | 1.728                      | <b>•</b> 8993           | 1.444                      | •9202         | 1.106                | •9394                   |
| 10.0                                                         | 1.962         | •9476                    | 1.528                      | •9590                   | 1.197                      | •9691         | •913                 | •9762                   |
| TO•2                                                         | 1.660         | •9681                    | 1.301                      | •9750                   | •984                       | •9814         | •759                 | •9856                   |
| 10.8                                                         | •670          | •9894                    | •527                       | •9917                   | •392                       | •9938         | •304                 | •9952                   |
| LL.2                                                         | •270          | •9960                    | •212                       | •9968                   | .158                       | •9977         | .122                 | •9982                   |
| 105                                                          | •105          | •9986<br>1 0000          | .083                       | .9989                   | 061                        | 1 0000        | _•048                | ·9994                   |
|        |                      |          |                      |                |                      |               | $T_c = 24 hc$ | ours          |
|--------|----------------------|----------|----------------------|----------------|----------------------|---------------|---------------|---------------|
| Serial | No.: 45              | <u> </u> | 46                   |                | 47                   |               | 48            |               |
| Q1/0   | 2 <u>10</u> :0       | .6       | 0.                   | 7              | 0.8                  | 3             | 0.            | 9             |
| Time   | PSH                  | PSMC     | PSH                  | PSMC           | PSH                  | PSMC          | PSH           | PSMC          |
| days   | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> Q/Q</u> 10 | cfs/AQ <sub>10</sub> | <u> 9/910</u> | cfs/AQ10      | <u>@/@</u> 10 |
| 0      | 0                    | 0        | 0                    | 0              | 0                    | 0             | 0             | 0             |
| •3     | •044                 | .0002    | .029                 | .0001          | .017                 | .0000         | .008          | .0000         |
| •8     | •370                 | .0038    | .252                 | .0025          | .149                 | .0015         | .071          | .0007         |
| 1•3    | •600                 | .0130    | .430                 | .0090          | .254                 | .0053         | .127          | .0026         |
| 2•0    | •764                 | .0307    | .533                 | .0216          | .362                 | .0133         | .166          | .0064         |
| 3.0    | 1.003                | .0630    | .712                 | .0442          | •477                 | .0286         | .225          | .0134         |
| 4.0    | 1.469                | .1070    | 1.072                | .0759          | •704                 | .0494         | .372          | .0240         |
| 4.6    | 2.124                | .1457    | 1.611                | .1044          | 1•155                | .0692         | .607          | .0343         |
| 4.9    | 2.888                | .1729    | 2.306                | .1256          | 1•631                | .0843         | .864          | .0423         |
| 5.0    | 3.800                | .1852    | 3.376                | .1361          | 2•831                | .0925         | 2.199         | .0479         |
| 5.1    | 5.632                | .2026    | 5.666                | .1527          | 5.592                | .1080         | 5.458         | .0620         |
| 5.2    | 8.450                | .2286    | 9.274                | .1802          | 10.041               | .1367         | 10.806        | .0919         |
| 5.3    | 11.874               | .2660    | 13.697               | .2225          | 15.541               | .1838         | 17.458        | .1439         |
| 5.4    | 14.982               | .3155    | 17.697               | .2803          | 20.502               | .2501         | 23.431        | .2191         |
| 5.5    | 16.845               | .3741    | 20.035               | .3498          | 23.337               | .3308         | 26.765        | .3114         |
| 5.6    | 17.205               | •4368    | 20.407               | .4243          | 23.698               | .4173         | 27.079        | .4104         |
| 5.7    | 16.242               | •4985    | 19.076               | .4970          | 21.944               | .5013         | 24.844        | .5059         |
| 5.8    | 14.568               | •5552    | 16.876               | .5632          | 19.166               | .5770         | 21.438        | .5910         |
| 5.9    | 12.633               | •6053    | 14.392               | .6207          | 16.092               | .6418         | 17.740        | .6631         |
| 6.0    | 10.755               | •6484    | 12.026               | .6694          | 13.214               | .6958         | 14.330        | .7221         |
| 6.2    | 7.851                | .7164    | 8.483                | •7441          | 9.035                | .7766         | 9.512         | .8085         |
| 6.4    | 5.804                | .7664    | 6.068                | •7973          | 6.255                | .8324         | 6.370         | .8664         |
| 6.6    | 4.290                | .8034    | 4.318                | •8353          | 4.249                | .8708         | 4.110         | .9046         |
| 6.9    | 2.972                | .8429    | 2.852                | •8742          | 2.627                | .9080         | 2.352         | .9394         |
| 7.2    | 2.168                | .8710    | 1.950                | •9003          | 1.657                | .9311         | 1.334         | .9592         |
| 7.6    | 1.581                | .8981    | 1.320                | •9238          | 1.024                | •9503         | .722          | •9736         |
| 8.0    | 1.199                | .9185    | .925                 | •9402          | .628                 | •9623         | .349          | •9813         |
| 9.0    | .844                 | .9548    | .630                 | •9676          | .392                 | •9797         | .197          | •9902         |
| 10.0   | .678                 | .9826    | .475                 | •9878          | .303                 | •9922         | .140          | •9964         |
| 10.3   | .554                 | .9895    | .390                 | •9926          | .249                 | •9953         | .116          | •9978         |
| 10.8   | •220                 | •9966    | •155                 | •9976          | .099                 | •9984         | .046          | •9993         |
| 11.2   | •088                 | •9986    | •062                 | •9991          | .040                 | •9994         | .018          | •9997         |
| 11.6   | •034                 | •9995    | •024                 | •9997          | .015                 | •9998         | .007          | •9999         |
| 12.5   | 0                    | 1•0000   | 0                    | 1•0000         | 0                    | 1.0000        | 0             | •9999         |

|                             |                                 |                                       |                                     |                                       |                                    |                                       | T <sub>c</sub> = 30 h     | ours                                  |
|-----------------------------|---------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|---------------------------|---------------------------------------|
| Serial<br>Q1/               | No.: 49<br>Q <sub>10</sub> : 0. | .2                                    | 50<br>0.                            | 3                                     | 51<br>0.                           | 4                                     | 52<br>0.                  | 5                                     |
| Time                        | PSH                             | PSMC                                  | PSH                                 | PSMC                                  | PSH                                | PSMC                                  | PSH                       | PSMC                                  |
| days                        | cfs/AQ <sub>10</sub>            | <u> Q/Q10</u>                         | cfs/AQ <sub>10</sub>                | <u> </u>                              | cfs/AQ <sub>10</sub>               | <u> Q/Q10</u>                         | cfs/AQ10                  | <u> </u>                              |
| 0<br>•4<br>•9<br>1.5<br>2.0 | 0<br>•955<br>1.686<br>1.955     | 0<br>.0007<br>.0103<br>.0407<br>.0747 | 0<br>.113<br>.716<br>1.281<br>1.541 | 0<br>•0005<br>•0077<br>•0306<br>•0568 | 0<br>•083<br>•538<br>•998<br>1•195 | 0<br>•0004<br>•0057<br>•0233<br>•0437 | 0<br>•425<br>•764<br>•937 | 0<br>.0003<br>.0046<br>.0181<br>.0339 |
| 3.0                         | 2.252                           | •1527                                 | 1.872                               | .1201                                 | 1.497                              | •0932                                 | 1.229                     | .0738                                 |
| 4.0                         | 2.574                           | •2416                                 | 2.316                               | .1965                                 | 2.006                              | •1567                                 | 1.686                     | .1263                                 |
| 4.6                         | 2.929                           | •3022                                 | 2.814                               | .2528                                 | 2.580                              | •2068                                 | 2.274                     | .1693                                 |
| 4.9                         | 3.228                           | •3363                                 | 3.306                               | .2865                                 | 3.169                              | •2383                                 | 2.889                     | .1975                                 |
| 5.1                         | 3.579                           | •3614                                 | 4.022                               | .3133                                 | 4.223                              | •2651                                 | 4.269                     | .2232                                 |
| 5.2                         | 3.830                           | •3751                                 | 4.582                               | •3292                                 | 5.117                              | •2823                                 | 5.520                     | .2412                                 |
| 5.3                         | 4.124                           | •3898                                 | 5.258                               | •3474                                 | 6.228                              | •3032                                 | 7.111                     | .2645                                 |
| 5.4                         | 4.438                           | •4057                                 | 5.994                               | •3682                                 | 7.464                              | •3285                                 | 8.910                     | .2940                                 |
| 5.5                         | 4.724                           | •4226                                 | 6.662                               | •3916                                 | 8.584                              | •3581                                 | 10.535                    | .3299                                 |
| 5.6                         | 4.935                           | •4405                                 | 7.144                               | •4171                                 | 9.378                              | •3913                                 | 11.666                    | .3708                                 |
| 5•7                         | 5.052                           | .4590                                 | 7.397                               | .4440                                 | 9.779                              | .4266                                 | 12.218                    | .4148                                 |
| 5•8                         | 5.063                           | .4777                                 | 7.391                               | .4713                                 | 9.730                              | .4626                                 | 12.098                    | •4597                                 |
| 5•9                         | 4.985                           | .4963                                 | 7.182                               | .4982                                 | 9.348                              | .4978                                 | 11.502                    | •5032                                 |
| 6•0                         | 4.845                           | .5145                                 | 6.841                               | .5241                                 | 8.761                              | .5312                                 | 10.630                    | •5440                                 |
| 6•2                         | 4.471                           | .5490                                 | 5.976                               | .5716                                 | 7.337                              | .5907                                 | 8.585                     | •6149                                 |
| 6.4                         | 4.090                           | •5807                                 | 5.149                               | .6126                                 | 6.050                              | .6400                                 | 6.816                     | .6715                                 |
| 6.6                         | 3.758                           | •6097                                 | 4.479                               | .6481                                 | 5.048                              | .6808                                 | 5.492                     | .7167                                 |
| 6.9                         | 3.346                           | •6490                                 | 3.706                               | .6933                                 | 3.919                              | .7301                                 | 4.032                     | .7689                                 |
| 7.2                         | 3.042                           | •6844                                 | 3.159                               | .7312                                 | 3.157                              | .7689                                 | 3.076                     | .8078                                 |
| 7.6                         | 2.760                           | •7272                                 | 2.658                               | .7640                                 | 2.497                              | .8103                                 | 2.284                     | .8469                                 |
| 8.0                         | 2.555                           | •7665                                 | 2.313                               | .8106                                 | 2.068                              | .8438                                 | 1.799                     | .8768                                 |
| 8.6                         | 2.322                           | •8206                                 | 1.957                               | .8576                                 | 1.677                              | .8849                                 | 1.366                     | .9114                                 |
| 9.2                         | 2.170                           | •8703                                 | 1.738                               | .8984                                 | 1.457                              | .9194                                 | 1.116                     | .9386                                 |
| 10.0                        | 2.009                           | •9322                                 | 1.566                               | .9470                                 | 1.253                              | .9594                                 | .951                      | .9688                                 |
| 10.5                        | 1.530                           | •9661                                 | 1.200                               | .9734                                 | .915                               | .9800                                 | .705                      | .9845                                 |
| 11.0                        | •702                            | •9864                                 | •551                                | •9893                                 | .416                               | .9920                                 | .321                      | •9938                                 |
| 11.5                        | •279                            | •9949                                 | •219                                | •9960                                 | .165                               | .9970                                 | .127                      | •9977                                 |
| 12.0                        | •107                            | •9982                                 | •084                                | •9986                                 | .063                               | .9990                                 | .048                      | •9992                                 |
| 13.0                        | 0                               | •9982                                 | 0                                   | 1.0000                                | 0                                  | 1.0000                                | 0                         | 1.0000                                |

|                |                    |               |                            |          |                      |              | $T_c = 30 hc$        | ours          |
|----------------|--------------------|---------------|----------------------------|----------|----------------------|--------------|----------------------|---------------|
| Serial<br>Q1/0 | No.: 53<br>Q10 : 0 | •6            | 54<br>0.5                  | 7        | 55<br>0.8            | }            | 56<br>0.9            | 9             |
| Time           | PSH                | PSMC          | PSH                        | PSMC     | PSH                  | PSMC         | PSH                  | PSMC          |
| days           | cfs/AQ10           | <u> Q/Q10</u> | <u>cfs/AQ<sub>l0</sub></u> | <u> </u> | cfs/AQ <sub>10</sub> | <u>9/910</u> | cfs/AQ <sub>10</sub> | <u>9/9</u> 10 |
| 0              | 0<br>•050          | 0             | 0                          | 0.0001   | 0<br>•019            | 0.0001       | 0<br>•009            | 0.0000        |
| •9             | •320               | .0034         | .219                       | .0023    | .129                 | .0013        | .062                 | .0006         |
| 1•5            | •584               | .0137         | .416                       | .0096    | .251                 | .0056        | .123                 | .0027         |
| 2•0            | •713               | .0257         | .500                       | .0180    | .332                 | .0110        | .153                 | .0053         |
| 3.0            | .949               | .0562         | .671                       | .0394    | .450                 | .0253        | .211                 | .0120         |
| 4.0            | 1.355              | .0975         | .986                       | .0690    | .644                 | .0449        | .336                 | .0216         |
| 4.6            | 1.898              | .1327         | 1.418                      | .0948    | 1.004                | .0625        | .526                 | .0308         |
| 4.9            | 2.478              | .1566         | 1.938                      | .1130    | 1.373                | .0754        | .725                 | .0376         |
| 5.1            | 4.179              | .1800         | 3.972                      | .1334    | 3.699                | .0923        | 3.365                | .0504         |
| 5.2            | 5.812              | •1984         | 6.010                      | .1518    | 6.148                | .1104        | 6.250                | .0681         |
| 5.3            | 7.926              | •2237         | 8.685                      | .1788    | 9.411                | .1390        | 10.134               | .0982         |
| 5.4            | 10.343             | •2574         | 11.774                     | .2165    | 13.212               | .1806        | 14.692               | .1439         |
| 5.5            | 12.519             | •2995         | 14.539                     | .2649    | 16.603               | .2355        | 18.735               | .2054         |
| 5.6            | 14.006             | •3483         | 16.397                     | .3218    | 18.845               | .3007        | 21.365               | .2791         |
| 5.7            | 14.707             | .4012         | 17.246                     | .3838    | 19.840               | .3718        | 22.496               | •3597         |
| 5.8            | 14.489             | .4550         | 16.905                     | .4466    | 19.348               | .4439        | 21.822               | •4412         |
| 5.9            | 13.647             | .5068         | 15.784                     | .5068    | 17.918               | .5125        | 20.050               | •5182         |
| 6.0            | 12.461             | .5549         | 14.256                     | .5621    | 16.020               | .5749        | 17.758               | •5877         |
| 6.2            | 9.759              | .6368         | 10.855                     | .6546    | 11.884               | .6777        | 12.853               | •7003         |
| 6.4            | 7.505              | .7001         | 8.116                      | .7241    | 8.654                | •7527        | 9.125                | .7806         |
| 6.6            | 5.866              | .7491         | 6.195                      | .7765    | 6.444                | •8080        | 6.630                | .8382         |
| 6.9            | 4.085              | .8036         | 4.141                      | .8329    | 4.101                | •8654        | 4.005                | .8959         |
| 7.2            | 2.958              | .8419         | 2.860                      | .8708    | 2.677                | •9019        | 2.455                | .9305         |
| 7.6            | 2.060              | .8784         | 1.856                      | .9050    | 1.603                | •9328        | 1.331                | .9576         |
| 8.0            | 1.532              | .9045         | 1.292                      | .9278    | 1.022                | .9517        | •757                 | •9725         |
| 8.6            | 1.082              | .9331         | .846                       | .9511    | .580                 | .9691        | •349                 | •9846         |
| 9.2            | .856               | .9541         | .639                       | .9670    | .397                 | .9793        | •201                 | •9900         |
| 10.0           | .713               | .9771         | .506                       | .9838    | .319                 | .9897        | •151                 | •9952         |
| 10.5           | .517               | .9887         | .365                       | .9920    | .233                 | .9949        | •109                 | •9976         |
| 11.0           | .234               | •9955         | .165                       | •9968    | .105                 | .9980        | .049                 | .9991         |
| 11.5           | .093               | •9983         | .065                       | •9988    | .042                 | .9992        | .019                 | .9996         |
| 12.0           | .035               | •9994         | .025                       | •9996    | .016                 | .9997        | .007                 | .9999         |
| 13.0           | 0                  | 1.0000        | 0                          | 1.0000   | 0                    | 1.0000       | 0                    | 1.0000        |

•

.

|                            |                         |                                  |                                |                                  |                        |                                  | T <sub>c</sub> = 36           | hours                            |
|----------------------------|-------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------|----------------------------------|-------------------------------|----------------------------------|
| Serial<br>Q <sub>l</sub> / | No.: 57<br>910 : 0.     | .2                               | 58<br>0.3                      | 3                                | 59<br>0.1              | 4                                | 60<br>0.                      | 5                                |
| Time                       | PSH                     | PSMC                             | PSH                            | PSMC                             | PSH                    | PSMC                             | PSH                           | PSMC                             |
| days                       | cfs/AQ <sub>10</sub>    | <u> </u>                         | cfs/AQ <sub>10</sub>           | <u> </u>                         | cfs/AQ <sub>10</sub>   | <u> </u>                         | cfs/AQ <sub>10</sub>          | <u> Q/Q10</u>                    |
| ٥                          | 0                       | 0                                | 0                              | 0                                | 0                      | 0                                | 0                             | 0                                |
| •2<br>1.2<br>2.0<br>3.0    | 1.130<br>1.817<br>2.177 | .0009<br>.0170<br>.0623<br>.1368 | .122<br>.848<br>1.418<br>1.794 | .0007<br>.0127<br>.0473<br>.1072 | .648<br>1.101<br>1.424 | .0005<br>.0095<br>.0363<br>.0830 | .072<br>.504<br>.857<br>1.165 | .0004<br>.0075<br>.0281<br>.0656 |
| 4.0                        | 2.498                   | •2231                            | 2.211                          | •1805                            | 1.889                  | .1433                            | 1.576                         | .1152                            |
| 4.8                        | 2.964                   | •3032                            | 2.884                          | •2544                            | 2.666                  | .2088                            | 2.366                         | .1714                            |
| 5.0                        | 3.176                   | •3259                            | 3.250                          | •2770                            | 3.133                  | .2301                            | 2.892                         | .1906                            |
| 5.1                        | 3.331                   | •3380                            | 3.565                          | •2896                            | 3.598                  | .2425                            | 3.506                         | .2024                            |
| 5.2                        | 3.521                   | •3506                            | 3.965                          | •3036                            | 4.212                  | .2569                            | 4.339                         | .2169                            |
| 5.3                        | 3.742                   | •3641                            | 4.451                          | •3192                            | 4.982                  | •2739                            | 5.411                         | •2349                            |
| 5.4                        | 3.987                   | •3784                            | 5.002                          | •3366                            | 5.874                  | •2940                            | 6.673                         | •2572                            |
| 5.5                        | 4.238                   | •3937                            | 5.574                          | •3562                            | 6.814                  | •3174                            | 8.017                         | •2843                            |
| 5.6                        | 4.467                   | •4098                            | 6.095                          | •3778                            | 7.670                  | •3442                            | 9.240                         | •3162                            |
| 5.7                        | 4.644                   | •4267                            | 6.492                          | •4011                            | 8.311                  | •3737                            | 10.141                        | •3519                            |
| 5.8                        | 4.760                   | .4441                            | 6.741                          | .4256                            | 8.704                  | .4051                            | 10.682                        | •3904                            |
| 5.9                        | 4.806                   | .4618                            | 6.826                          | .4507                            | 8.824                  | .4375                            | 10.825                        | •4301                            |
| 6.0                        | 4.784                   | .4796                            | 6.757                          | .4758                            | 8.686                  | .4698                            | 10.598                        | •4696                            |
| 6.1                        | 4.708                   | .4972                            | 6.567                          | .5005                            | 8.354                  | .5013                            | 10.099                        | •5078                            |
| 6.2                        | 4.593                   | .5144                            | 6.293                          | .5243                            | 7.898                  | .5314                            | 9.435                         | •5439                            |
| 6.4                        | 4.296                   | •5474                            | 5.623                          | .5684                            | 6.815                  | .5858                            | 7.902                         | .6080                            |
| 6.6                        | 3.984                   | •5781                            | 4.960                          | .6076                            | 5.787                  | .6323                            | 6.494                         | .6610                            |
| 6.8                        | 3.704                   | •6066                            | 4.403                          | .6422                            | 4.956                  | .6719                            | 5.399                         | .7048                            |
| 7.1                        | 3.348                   | •6457                            | 3.736                          | .6872                            | 3.989                  | .7212                            | 4.151                         | .7573                            |
| 7.5                        | 2.989                   | •6925                            | 3.078                          | .7373                            | 3.072                  | .7729                            | 2.997                         | .8095                            |
| 8.0                        | 2.680                   | •7449                            | 2.536                          | .7890                            | 2.366                  | .8227                            | 2.159                         | .8565                            |
| 8.6                        | 2.414                   | •8014                            | 2.108                          | .8402                            | 1.861                  | .8690                            | 1.583                         | .8973                            |
| 9.2                        | 2.230                   | •8529                            | 1.837                          | .8838                            | 1.568                  | .9068                            | 1.248                         | .9285                            |
| 10.0                       | 2.052                   | •9163                            | 1.610                          | .9344                            | 1.308                  | .9490                            | .994                          | .9609                            |
| 10.5                       | 1.710                   | •9519                            | 1.343                          | .9623                            | 1.045                  | .9712                            | .803                          | .9778                            |
| 11.0                       | •978                    | •9769                            | •768                           | .9819                            | .587                   | .9862                            | .453                          | .9894                            |
| 11.6                       | •391                    | •9912                            | •307                           | .9932                            | .234                   | .9948                            | .180                          | .9960                            |
| 12.5                       | •092                    | •9982                            | •072                           | .9986                            | .055                   | .9990                            | .042                          | 9992                             |
| 14.0                       | 0                       | 1.0000                           | 0                              | 1.0000                           | 0                      | 1.0000                           | 0                             | 1.0000                           |

• •

|                       |                                  |                                      |                           |                              |                           |                              | T <sub>e</sub> = 36 3     | hours                        |
|-----------------------|----------------------------------|--------------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|
| Serial<br>Q1/0        | No.: 61<br>9 <sub>10</sub> : 0   | <b>.</b> 6                           | 62<br>0.7                 | 7                            | 63<br>0.8                 | 3                            | 64<br>0.9                 | <del>)</del>                 |
| Time                  | PSH                              | PSMC                                 | PSH                       | PSMC                         | PSH                       | PSMC                         | PSH                       | PSMC                         |
| days                  | cfs/AQ10                         | <u> </u>                             | cfs/AQ <sub>10</sub>      | <u> Q/Q10</u>                | cfs/AQ <sub>10</sub>      | <u> </u>                     | cfs/AQ <sub>10</sub>      | <u>Q/Q</u> 10                |
| 0<br>•5<br>1.2<br>2.0 | 0<br>.054<br>.382<br>.653<br>895 | 0<br>.0003<br>.0056<br>.0214<br>0498 | 0<br>.036<br>.266<br>.460 | 0<br>.0002<br>.0039<br>.0150 | 0<br>.021<br>.156<br>.298 | 0<br>.0001<br>.0023<br>.0091 | 0<br>.010<br>.077<br>.140 | 0<br>.0000<br>.0011<br>.0044 |
| 4.0                   | 1.258                            | .0887                                | .911                      | .0627                        | •596                      | .0407                        | .306                      | .0195                        |
| 4.8                   | 1.986                            | .1347                                | 1.504                     | .0965                        | 1•059                     | .0638                        | .555                      | .0315                        |
| 5.0                   | 2.536                            | .1510                                | 2.062                     | .1092                        | 1•574                     | .0730                        | 1.014                     | .0367                        |
| 5.1                   | 3.301                            | .1618                                | 2.986                     | .1185                        | 2•645                     | .0808                        | 2.244                     | .0427                        |
| 5.2                   | 4.360                            | .1759                                | 4.282                     | .1319                        | 4•170                     | .0933                        | 4.011                     | .0542                        |
| 5.3                   | 5.752                            | •1946                                | 6.014                     | .1509                        | 6.245                     | .1125                        | 6.449                     | .0735                        |
| 5.4                   | 7.411                            | •2189                                | 8.096                     | .1769                        | 8.766                     | .1401                        | 9.430                     | .1027                        |
| 5.5                   | 9.193                            | •2495                                | 10.347                    | .2109                        | 11.507                    | .1775                        | 12.688                    | .1434                        |
| 5.6                   | 10.811                           | •2864                                | 12.385                    | .2528                        | 13.984                    | .2244                        | 15.620                    | .1956                        |
| 5.7                   | 11.982                           | •3284                                | 13.839                    | .3011                        | 15.724                    | .2792                        | 17.650                    | .2568                        |
| 5.8                   | 12.675                           | •3739                                | 14.683                    | •3537                        | 16.719                    | •3389                        | 18.791                    | .3239                        |
| 5.9                   | 12.833                           | •4209                                | 14.846                    | •4081                        | 16.878                    | •4008                        | 18.923                    | .3934                        |
| 6.0                   | 12.498                           | •4676                                | 14.387                    | •4620                        | 16.277                    | •4619                        | 18.170                    | .4617                        |
| 6.1                   | 11.814                           | •5125                                | 13.499                    | •5134                        | 15.167                    | •5198                        | 16.818                    | .5261                        |
| 6.2                   | 10.927                           | •5544                                | 12.374                    | •5611                        | 13.786                    | •5732                        | 15.168                    | .5850                        |
| 6.4                   | 8.922                            | .6277                                | 9.876                     | .6432                        | 10.772                    | .6638                        | 11.616                    | .6838                        |
| 6.6                   | 7.130                            | .6868                                | 7.709                     | .7079                        | 8.215                     | .7335                        | 8.662                     | .7581                        |
| 6.8                   | 5.776                            | .7342                                | 6.123                     | .7586                        | 6.390                     | .7870                        | 6.602                     | .8140                        |
| 7.1                   | 4.260                            | .7893                                | 4.373                     | .8161                        | 4.400                     | .8459                        | 4.379                     | .8738                        |
| 7.5                   | 2.893                            | .8412                                | 2.805                     | .8680                        | 2.648                     | .8966                        | 2.461                     | .9228                        |
| 8.0                   | 1.947                            | .8852                                | 1.756                     | •9092                        | 1.528                     | •9343                        | 1.295                     | •9564                        |
| 8.6                   | 1.323                            | .9206                                | 1.105                     | •9400                        | .855                      | •9596                        | .632                      | •9767                        |
| 9.2                   | .991                             | .9460                                | .779                      | •9607                        | .540                      | •9749                        | .340                      | •9873                        |
| 10.0                  | .752                             | .9711                                | .542                      | •9794                        | .340                      | •9870                        | .164                      | •9938                        |
| 10.5                  | .594                             | .9837                                | .422                      | •9884                        | .268                      | •9927                        | .126                      | •9966                        |
| 11.0                  | .332                             | .9922                                | .236                      | •9945                        | .150                      | •9965                        | .070                      | .9984                        |
| 11.6                  | .132                             | .9971                                | .094                      | •9979                        | .059                      | •9987                        | .028                      | .9994                        |
| 12.5                  | .031                             | .9994                                | .022                      | •9996                        | .014                      | •9997                        | .006                      | .9999                        |
| 14.0                  | 0                                | 1.0000                               | 0                         | 1.0000                       | 0                         | 1•0000                       | 0                         | 1.0000                       |

|                            |                                |          |                      |          |                      | נ        | e = 42 ho            | urs       |
|----------------------------|--------------------------------|----------|----------------------|----------|----------------------|----------|----------------------|-----------|
| Serial<br>Q <sub>l</sub> / | No.: 65<br>Q <sub>10</sub> : 0 | .2       | 66<br>0.             | 3        | 67<br>0.1            | <u>}</u> | 68<br>0.             | 5         |
| Time                       | PSH                            | PSMC     | PSH                  | PSMC     | PSH                  | PSMC     | PSH                  | PSMC      |
| days                       | cfs/AQ <sub>10</sub>           | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u></u> 0 |
| 0                          | 0                              | 0        | 0                    | 0        | 0                    | 0        | 0                    | 0         |
| .6                         | .174                           | .0011    | .131                 | .0008    | .097                 | .0006    | .078                 | .0005     |
| 1.2                        | .892                           | .0123    | .670                 | .0092    | .509                 | .0069    | .398                 | .0054     |
| 2.0                        | 1.666                          | .0516    | 1.290                | .0391    | 1.001                | .0300    | .777                 | .0232     |
| 3.0                        | 2.097                          | .1220    | 1.714                | .0952    | 1.354                | .0737    | 1.101                | .0580     |
| 4.0                        | 2.428                          | .2056    | 2.120                | •1655    | 1.789                | •1309    | 1.484                | .1050     |
| 4.8                        | 2.846                          | .2829    | 2.711                | •2358    | 2.466                | •1922    | 2.162                | .1572     |
| 5.0                        | 3.026                          | .3046    | 3.007                | •2568    | 2.834                | •2117    | 2.570                | .1744     |
| 5.2                        | 3.301                          | .3280    | 3.550                | •2809    | 3.630                | •2353    | 3.610                | .1969     |
| 5.4                        | 3.669                          | .3537    | 4.330                | •3099    | 4.841                | •2664    | 5.268                | .2294     |
| 5.5                        | 3.875                          | •3677    | 4.784                | •3268    | 5.564                | .2856    | 6.278                | •2507     |
| 5.6                        | 4.082                          | •3824    | 5.245                | •3453    | 6.306                | .3075    | 7.325                | •2757     |
| 5.7                        | 4.272                          | •3979    | 5.667                | •3654    | 6.989                | .3320    | 8.287                | •3045     |
| 5.8                        | 4.425                          | •4139    | 6.004                | •3870    | 7.524                | .3588    | 9.031                | •3364     |
| 5.9                        | 4.536                          | •4305    | 6.241                | •4096    | 7.898                | .3872    | 9.546                | •3707     |
| 6.0                        | 4.597                          | .4474    | 6.366                | .4329    | 8.086                | .4167    | 9•795                | .4063     |
| 6.1                        | 4.606                          | .4644    | 6.370                | .4564    | 8.075                | .4465    | 9•756                | .4423     |
| 6.2                        | 4.569                          | .4814    | 6.272                | .4798    | 7.899                | .4759    | 9•484                | .4778     |
| 6.3                        | 4.497                          | .4982    | 6.098                | .5026    | 7.608                | .5045    | 9•058                | .5119     |
| 6.4                        | 4.399                          | .5146    | 5.872                | .5247    | 7.239                | .5319    | 8•531                | .5444     |
| 6.6                        | 4.155                          | .5463    | 5.338                | .5662    | 6.391                | .5822    | 7.346                | .6029     |
| 6.8                        | 3.895                          | .5761    | 4.795                | .6036    | 5.554                | .6262    | 6.206                | .6528     |
| 7.0                        | 3.653                          | .6040    | 4.317                | .6372    | 4.840                | .6645    | 5.262                | .6949     |
| 7.3                        | 3.343                          | .6428    | 3.734                | .6818    | 4.001                | .7133    | 4.182                | .7469     |
| 7.6                        | 3.088                          | .6784    | 3.266                | .7205    | 3.348                | .7538    | 3.359                | .7884     |
| 8.0                        | 2.820                          | .7220    | 2.784                | .7650    | 2.700                | .7981    | 2.568                | .8317     |
| 8.5                        | 2.565                          | .7718    | 2.355                | .8122    | 2.165                | .8427    | 1.943                | .8729     |
| 9.2                        | 2.310                          | .8346    | 1.961                | .8676    | 1.713                | .8922    | 1.420                | .9156     |
| 10.0                       | 2.110                          | .9000    | 1.683                | .9212    | 1.397                | .9379    | 1.084                | .9522     |
| 10.5                       | 1.840                          | .9370    | 1.451                | .9504    | 1.151                | .9616    | .884                 | .9704     |
| 11.2                       | •967                           | •9737    | .762                 | •9794    | •588                 | .9842    | .454                 | .9878     |
| 12.0                       | •334                           | •9915    | .263                 | •9933    | •202                 | .9949    | .156                 | .9961     |
| 12.8                       | •110                           | •9975    | .086                 | •9980    | •066                 | .9985    | .051                 | .9988     |
| 14.5                       | 0                              | 1.0000   | 0                    | 1.0000   | 0                    | 1.0000   | 0                    | 1.0000    |

|                             |                                |          |                      |                |                      |          | T <sub>c</sub> = 42  | hours                   |
|-----------------------------|--------------------------------|----------|----------------------|----------------|----------------------|----------|----------------------|-------------------------|
| Serial<br>Q <sub>l</sub> /0 | No.: 69<br>Q <sub>10</sub> : 0 | .6       | 70<br>0.             | 7              | בק<br>0.8            | 3        | 72<br>0.             | 9                       |
| Time                        | PSH                            | PSMC     | PSH                  | PSMC           | PSH                  | PSMC     | PSH                  | PSMC                    |
| days                        | cfs/AQ <sub>10</sub>           | <u> </u> | cfs/AQ <sub>10</sub> | <u> Q/Q</u> 10 | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u>0/0<sub>10</sub></u> |
| 0                           | 0                              | 0        | 0                    | 0              | 0                    | 0        | 0                    | 0                       |
| .6                          | .058                           | .0004    | 039                  | .0002          | .023                 | .0001    | .010                 | .0001                   |
| 1.2                         | .301                           | .0041    | 209                  | .0028          | .122                 | .0016    | .060                 | .0008                   |
| 2.0                         | .592                           | .0176    | 418                  | .0123          | .266                 | .0074    | .126                 | .0036                   |
| 3.0                         | .844                           | .0441    | 593                  | .0309          | .396                 | .0197    | .186                 | .0093                   |
| 4.0                         | 1.178                          | .0807    | .850                 | .0569          | .558                 | .0370    | .282                 | .0177                   |
| 4.8                         | 1.798                          | .1230    | 1.347                | .0879          | .939                 | .0579    | .490                 | .0285                   |
| 5.0                         | 2.216                          | .1376    | 1.759                | .0990          | 1.313                | .0658    | .810                 | .0328                   |
| 5.2                         | 3.499                          | .1582    | 3.293                | .1172          | 3.079                | .0814    | 2.818                | .0455                   |
| 5.4                         | 5.621                          | .1914    | 5.903                | .1505          | 6.173                | .1148    | 6.419                | .0788                   |
| 5.5                         | 6.936                          | .2146    | 7.540                | .1752          | 8.138                | .1412    | 8.728                | .1066                   |
| 5.6                         | 8.308                          | .2426    | 9.258                | .2062          | 10.212               | .1749    | 11.174               | .1432                   |
| 5.7                         | 9.567                          | .2755    | 10.832               | .2431          | 12.111               | .2159    | 13.409               | .1884                   |
| 5.8                         | 10.527                         | .3125    | 12.016               | .2852          | 13.520               | .2631    | 15.045               | .2406                   |
| 5.9                         | 11.188                         | .3525    | 12.824               | .3309          | 14.476               | .3146    | 16.148               | .2980                   |
| 6.0                         | 11.495                         | •3943    | 13.187               | .3787          | 14.890               | .3686    | 16.606               | •3582                   |
| 6.1                         | 11.418                         | •4364    | 13.063               | .4270          | 14.708               | .4230    | 16.354               | •4188                   |
| 6.2                         | 11.040                         | •4778    | 12.566               | .4742          | 14.078               | .4759    | 15.577               | •4774                   |
| 6.3                         | 10.467                         | •5174    | 11.836               | .5191          | 13.180               | .5260    | 14.500               | •5327                   |
| 6.4                         | 9.774                          | •5547    | 10.968               | .5610          | 12.127               | .5726    | 13.251               | •5837                   |
| 6.6                         | 8.239                          | .6211    | 9.079                | .6349          | 9.864                | .6535    | 10.602               | .6715                   |
| 6.8                         | 6.794                          | .6763    | 7.338                | .6951          | 7.814                | .7183    | 8.237                | .7404                   |
| 7.0                         | 5.622                          | .7218    | 5.958                | .7438          | 6.217                | .7696    | 6.425                | .7940                   |
| 7.3                         | 4.315                          | .7764    | 4.449                | .8010          | 4.506                | .8284    | 4.519                | .8540                   |
| 7.6                         | 3.340                          | .8185    | 3.331                | .8437          | 3.257                | .8710    | 3.151                | .8540                   |
| 8.0                         | 2.424                          | .8604    | 2.296                | .8844          | 2.123                | .9097    | 1.937                | •9324                   |
| 8.5                         | 1.726                          | .8982    | 1.540                | .9192          | 1.320                | .9409    | 1.114                | •9599                   |
| 9.2                         | 1.174                          | .9348    | .973                 | .9507          | .742                 | .9665    | .545                 | •9802                   |
| 10.0                        | .844                           | .9642    | .637                 | .9742          | .428                 | .9835    | .250                 | •9919                   |
| 10.5                        | .662                           | .9782    | .475                 | .9844          | .301                 | .9901    | .144                 | •9953                   |
| 11.2                        | •335                           | .9910    | •239                 | •9936          | .152                 | •9960    | .072                 | .9981                   |
| 12.0                        | •115                           | .9971    | •082                 | •9980          | .052                 | •9987    | .024                 | .9994                   |
| 12.8                        | •037                           | .9992    | •026                 | •9994          | .017                 | •9996    | .008                 | .9998                   |
| 14.5                        | 0                              | 1.0000   | 0                    | 1.0000         | 0                    | 1•0000   | 0                    | 1.0000                  |

|                              |                                 |                                   |                           |                                   |                      |                                   | $T_c = 48 h$              | ours                              |
|------------------------------|---------------------------------|-----------------------------------|---------------------------|-----------------------------------|----------------------|-----------------------------------|---------------------------|-----------------------------------|
| Serial<br>Q1/0               | No.: 73<br>Q <sub>10</sub> : 0. | .2                                | 74<br>0.3                 | 3                                 | 75<br>0.1            | +                                 | 76<br>0.                  | 5                                 |
| Time                         | PSH                             | PSMC                              | PSH                       | PSMC                              | PSH                  | PSMC                              | PSH                       | PSMC                              |
| days                         | cfs/AQ <sub>l0</sub>            | <u>२/२<sub>10</sub></u>           | cfs/AQ <sub>10</sub>      | <u>q/q<sub>10</sub></u>           | cfs/AQ10             | <u>9/9</u> 10                     | cfs/AQ_10                 | <u>9/9</u> 10                     |
| 0                            | 0                               | 0                                 | 0                         | 0                                 | 0                    | 0                                 | 0                         | 0                                 |
| .6                           | .120                            | .0008                             | .090                      | .0006                             | .067                 | .0004                             | •054                      | .0003                             |
| 1.3                          | .811                            | .0118                             | .610                      | .0088                             | .464                 | .0066                             | •362                      | .0052                             |
| 2.0                          | 1.500                           | .0425                             | 1.155                     | .0321                             | .895                 | .0246                             | •694                      | .0191                             |
| 3.0                          | 2.001                           | .1083                             | 1.624                     | .0842                             | 1.278                | .0651                             | 1.033                     | .0512                             |
| 4.0                          | 2.350                           | .1888                             | 2.027                     | .1514                             | 1.692                | .1193                             | 1.398                     | .0955                             |
| 4.8                          | 2.733                           | .2635                             | 2.557                     | .2182                             | 2.291                | .1770                             | 1.988                     | .1442                             |
| 5.0                          | 2.888                           | .2843                             | 2.803                     | .2380                             | 2.595                | .1949                             | 2.320                     | .1599                             |
| 5.2                          | 3.116                           | .3065                             | 3.230                     | .2602                             | 3.203                | .2162                             | 3.099                     | .1797                             |
| 5.4                          | 3.413                           | .3306                             | 3.831                     | .2862                             | 4.107                | .2430                             | 4.305                     | .2068                             |
| 5.5                          | 3.585                           | .3436                             | 4.194                     | .3010                             | 4.670                | .2592                             | 5.077                     | .2241                             |
| 5.6                          | 3.763                           | .3572                             | 4.576                     | .3172                             | 5.272                | .2775                             | 5.909                     | .2443                             |
| 5.7                          | 3.939                           | .3714                             | 4.958                     | .3348                             | 5.877                | .2981                             | 6.752                     | .2677                             |
| 5.8                          | 4.100                           | .3863                             | 5.310                     | .3538                             | 6.437                | .3208                             | 7.532                     | .2940                             |
| 5.9                          | 4.235                           | .4017                             | 5.600                     | .3740                             | 6.892                | .3454                             | 8.160                     | .3229                             |
| 6.0                          | 4.335                           | .4176                             | 5,812                     | .3951                             | 7.221                | .3714                             | 8.606                     | •3538                             |
| 6.1                          | 4.400                           | .4338                             | 5,943                     | .4168                             | 7.419                | .3985                             | 8.868                     | •3860                             |
| 6.2                          | 4.428                           | .4501                             | 5,992                     | .4388                             | 7.486                | .4260                             | 8.946                     | •4189                             |
| 6.3                          | 4.420                           | .4665                             | 5,962                     | .4610                             | 7.427                | .4535                             | 8.848                     | •4517                             |
| 6.4                          | 4.379                           | .4828                             | 5,863                     | .4828                             | 7.257                | .4806                             | 8.596                     | •4839                             |
| 6.6                          | 4.228                           | .5146                             | 5.521                     | .5249                             | 6.702                | .5322                             | 7.805                     | •5444                             |
| 6.8                          | 4.025                           | .5452                             | 5.084                     | .5642                             | 6.017                | .5791                             | 6.860                     | •5986                             |
| 7.0                          | 3.804                           | .5742                             | 4.630                     | .6000                             | 5.322                | .6209                             | 5.917                     | •6456                             |
| 7.3                          | 3.499                           | .6147                             | 4.037                     | .6480                             | 4.446                | .6748                             | 4.766                     | •7044                             |
| 7.6                          | 3.240                           | .6521                             | 3.556                     | .6900                             | 3.765                | .7202                             | 3.899                     | •7521                             |
| 8.0                          | 2.956                           | .6979                             | 3.037                     | .7386                             | 3.053                | .7702                             | 3.014                     | .8028                             |
| 8.5                          | 2.677                           | .7499                             | 2.552                     | .7900                             | 2.425                | .8203                             | 2.259                     | .8508                             |
| 9.2                          | 2.393                           | .8153                             | 2.097                     | .8497                             | 1.881                | .8753                             | 1.621                     | .9002                             |
| 10.0                         | 2.171                           | .8827                             | 1.775                     | .9065                             | 1.512                | .9250                             | 1.213                     | .9413                             |
| 10.5                         | 1.944                           | .9212                             | 1.558                     | .9376                             | 1.273                | .9508                             | 1.003                     | .9618                             |
| 11.2<br>12.0<br>13.0<br>15.0 | 1.189<br>.478<br>.142<br>0      | .9625<br>.9858<br>.9962<br>1.0000 | .942<br>.377<br>.112<br>0 | .9704<br>.9889<br>.9970<br>1.0000 | •737<br>•293<br>•086 | .9770<br>.9914<br>.9977<br>1.0000 | •570<br>•226<br>•066<br>0 | .9823<br>.9934<br>.9982<br>1.0000 |

|                  |                      |               |                      |               |                 |               | $T_{c} = 48$         | hours         |
|------------------|----------------------|---------------|----------------------|---------------|-----------------|---------------|----------------------|---------------|
| Serial           | No.: 77              |               | 78                   |               | 79              |               | 80                   |               |
| Q <sub>1</sub> / | Q <sub>10</sub> : 0  | .6            | 0.                   | 7             | 0.8             | 8             | 0.                   | 9             |
| Time             | PSH                  | PSMC          | PSH                  | PSMC          | PSH             | PSMC          | PSH                  | PSMC          |
| days             | cfs/AQ <sub>10</sub> | <u> </u>      | cfs/AQ <sub>10</sub> | <u> Q/Q10</u> |                 | <u> </u>      | cfs/AQ <sub>10</sub> | <u> </u>      |
| 0                | 0                    | 0             | Ο.                   | 0             | 0               | 0             | 0                    | 0             |
| •6               | •040                 | .0002         | .027                 | .0002         | .016            | .0001         | •007                 | .0000         |
| 1.3              | •274                 | <b>.</b> 0039 | .190                 | .0027         | .112            | .0016         | .055                 | .0008         |
| 2.0              | •528                 | .0145         | •373                 | .0101         | •234            | .0061         | .112                 | .0029         |
| 3.0              | •790                 | •0389         | •555                 | .0272         | •370            | .1727         | <b>.</b> 173         | .0082         |
| 4.0              | 1.104                | .0732         | •793                 | .0516         | .522            | .0334         | .261                 | .0160         |
| 4.8              | 1.639                | .1125         | 1.218                | .0802         | <b>.</b> 840    | .0526         | •437                 | .0258         |
| 5.0              | 1.97 <u>7</u>        | .1256         | 1.545                | .0901         | 1.138           | .0596         | .689                 | .0296         |
| 5.2              | 2.918                | .1434         | 2.651                | .1052         | 2.395           | .0722         | 2.098                | .0394         |
| 5.4              | 4.429                | .1702         | 4.476                | •1311         | 4.524           | .0972         | 4.538                | .0632         |
| 5.5              | 5.419                | .1882         | 5.696                | .1498         | 5.972           | .1166         | 6.226                | .0830         |
| 5.6              | 6.493                | .2102         | 7.024                | .1732         | 7.558           | .1414         | 8.080                | .1093         |
| 5•7              | 7.586                | .2362         | 8.382                | .2016         | 9.183           | .1722         | 9.984                | .1426         |
| 5.8              | 8,600                | <b>.</b> 2660 | 9.640                | <b>.</b> 2348 | 10.691          | .2088         | 11.750               | .1825         |
| 5.9              | 9.405                | .2991         | 10.630               | .2721         | 11.865          | <b>.</b> 2503 | 13.110               | .2282         |
| 6.0              | 9.970                | •3348         | 11.315               | .3125         | 12.668          | <b>.</b> 2954 | 14.028               | .2781         |
| 6.1              | 10.296               | .3722         | 11.702               | •3549         | 13.112          | •3429         | 14.526               | •3306         |
| 6.2              | 10.381               | .4102         | 11.791               | •3981         | 13 <b>.1</b> 98 | •3913         | 14.603               | .3842         |
| 6.3              | 10.238               | .4482         | 11.598               | <b>.</b> 4412 | 12.948          | •4394         | 14.287               | •4373         |
| 6.4              | 9.898                | <b>.</b> 4853 | 11.163               | .4831         | 12.407          | .4860         | 13.633               | .4887         |
| 6.6              | 8.858                | •5545         | 9.866                | .5606         | 10.836          | •5717         | 11.770               | •5823         |
| 6.8              | 7.644                | .6154         | 8.386                | .6279         | 9.075           | .6450         | 9.720                | .6613         |
| 7.0              | 6.452                | •6671         | 6.954                | .6841         | 7.390           | .7053         | 7•779                | •7253         |
| 7•3              | 5.034                | .7302         | 5.290                | •7512         | 5.473           | •7757         | 5.612                | •7984         |
| 7.6              | 3•995                | •7799         | 4.095                | .8029         | 4.128           | .8284         | 4.125                | .8519         |
| 8.0              | 2.954                | .8308         | 2.908                | .8540         | 2.810           | .8789         | 2.693                | •9014         |
| 8.5              | 2.092                | <b>.</b> 8764 | 1.951                | •8977         | 1.772           | .9200         | 1.599                | •9396         |
| 9•2              | 1.397                | <b>.</b> 9206 | 1.213                | •9376         | •998            | •9546         | .812                 | •9695         |
| 10.0             | •985                 | •9550         | •791                 | •9663         | •587            | •9770         | .416                 | •9866         |
| 10.5             | •784                 | •9713         | •599                 | •9791         | •422            | •9863         | .265                 | <b>•99</b> 28 |
| 11.2             | .425                 | •9869         | •305                 | •9906         | .194            | .9941         | .093                 | •9972         |
| 12.0             | .168                 | •9951         | .120                 | •9965         | .076            | •9978         | •036                 | •9990         |
| 13.0             | .049                 | •9987         | •035                 | •9991         | .022            | •9994         | .010                 | •9997         |
| 15.0             | 0                    | 1.0000        | 0                    | 1.0000        | 0               | 1.0000        | 0                    | 1.0000        |

|           |                      |                |                      |          |                      |          | T <sub>e</sub> = 54 | hours          |
|-----------|----------------------|----------------|----------------------|----------|----------------------|----------|---------------------|----------------|
| Serial    | No.: 81              |                | 82                   |          | 83                   | <u></u>  | 84                  |                |
| $Q_{1}/2$ | Q <sub>10</sub> : 0  | .2             | 0.                   | 3        | 0.1                  | ŀ        | 0.                  | 5              |
| Time      | PSH                  | PSMC           | PSH                  | PSMC     | PSH                  | PSMC     | PSH                 | PSMC           |
| days      | cfs/AQ <sub>10</sub> | <u> 9/9</u> 10 | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ10            | <u> 9/9</u> 10 |
| 0         | 0                    | 0              | 0                    | 0        | 0                    | 0        | 0                   | 0              |
| .6        | .087                 | .0005          | .065                 | .0004    | .048                 | .0003    | .039                | .0002          |
| 1.3       | .640                 | .0089          | .481                 | .0067    | .366                 | .0050    | .286                | .0039          |
| 2.0       | 1.331                | .0349          | 1.020                | .0263    | .790                 | .0201    | .612                | .0156          |
| 3.0       | 1.897                | .0957          | 1.529                | .0742    | 1.199                | .0573    | .965                | .0450          |
| 4.0       | 2.269                | .1730          | 1.937                | .1381    | 1.601                | .1085    | 1.319               | .0867          |
| 4.8       | 2.631                | .2451          | 2.422                | .2018    | 2.141                | .1629    | 1.841               | .1323          |
| 5.0       | 2.768                | .2650          | 2.633                | .2204    | 2.398                | .1795    | 2.118               | .1468          |
| 5.2       | 2.961                | .2862          | 2.977                | .2411    | 2.876                | .1989    | 2.717               | .1644          |
| 5.4       | 3.210                | .3090          | 3.462                | .2648    | 3.589                | .2226    | 3.652               | .1877          |
| 5.6       | 3.504                | .3338          | 4.063                | .2926    | 4.502                | •2524    | 4.883               | .2191          |
| 5.8       | 3.811                | .3609          | 4.713                | .3250    | 5.516                | •2894    | 6.275               | .2602          |
| 6.0       | 4.070                | .3901          | 5.261                | .3620    | 6.370                | •3334    | 7.446               | .3110          |
| 6.1       | 4.164                | .4054          | 5.454                | .3181    | 6.666                | •3574    | 7.844               | .3392          |
| 6.2       | 4.231                | .4209          | 5.591                | .4022    | 6.873                | •3824    | 8.121               | .3686          |
| 6.3       | 4.271                | .4366          | 5.667                | .4230    | 6.986                | .4080    | 8.269               | •3989          |
| 6.4       | 4.278                | .4524          | 5.672                | .4439    | 6.982                | .4337    | 8.246               | •4293          |
| 6.5       | 4.260                | .4682          | 5.621                | .4648    | 6.891                | .4593    | 8.108               | •4594          |
| 6.6       | 4.219                | .4839          | 5.524                | .4854    | 6.732                | .4845    | 7.876               | •4889          |
| 6.8       | 4.085                | .5147          | 5.230                | .5252    | 6.262                | .5325    | 7.216               | •5446          |
| 7.0       | 3.912                | •5443          | 4.866                | .5625    | 5.697                | •5766    | 6.443               | •5950          |
| 7.3       | 3.630                | •5862          | 4.298                | .6132    | 4.840                | •6348    | 5.294               | •6597          |
| 7.6       | 3.373                | •6250          | 3.808                | .6581    | 4.130                | •6843    | 4.372               | •7129          |
| 8.0       | 3.085                | •6727          | 3.278                | .7104    | 3.392                | •7396    | 3.445               | •7703          |
| 8.5       | 2.790                | •7270          | 2.754                | .7659    | 2.695                | •7955    | 2.591               | •8256          |
| 9.0       | 2.560                | •7764          | 2.371                | .8131    | 2.218                | .8405    | 2.025               | .8678          |
| 9.5       | 2.381                | •8220          | 2.086                | .8541    | 1.880                | .8782    | 1.627               | .9013          |
| 10.0      | 2.237                | •8647          | 1.874                | .8906    | 1.632                | .9105    | 1.349               | .9286          |
| 10.6      | 1.969                | •9119          | 1.603                | .9294    | 1.335                | .9435    | 1.075               | .9554          |
| 11.2      | 1.389                | •9496          | 1.119                | .9600    | .902                 | .9684    | .718                | .9754          |
| 12.0      | .635                 | .9787          | .504                 | .9832    | •397                 | .9869    | .308                | •9899          |
| 13.0      | .218                 | .9932          | .172                 | .9946    | •134                 | .9958    | .104                | •9968          |
| 14.0      | .071                 | .9980          | .056                 | .9985    | •043                 | .9988    | .033                | •9991          |
| 16.0      | 0                    | 1.0000         | 0                    | 1.0000   | 0                    | 1.0000   | 0                   | 1.0000         |

•

. . .

.

|                            |                      |                |                      |          | ~                    |                | $T_{c} = 54$         | hours                    |
|----------------------------|----------------------|----------------|----------------------|----------|----------------------|----------------|----------------------|--------------------------|
| Serial<br>Q <sub>1</sub> / | No.: 85<br>Quo : 0   | .6             | 86                   | 7        | 87                   | 3              | 88<br>0.             | 9                        |
| Time                       | PSH                  | PSMC           | PSH                  | PSMC     | PSH                  | PSMC           | PSH                  | PSMC                     |
| days                       | cfs/AQ <sub>10</sub> | <u>Q/Q</u> 10  | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>10</sub> | <u>Q/Q</u> 10  | cfs/AQ <sub>10</sub> | <u> Q/Q<sub>10</sub></u> |
| 0                          | 0                    | 0              | 0                    | 0        | 0                    | 0              | 0                    | 0                        |
| .6<br>1.3                  | .029<br>.216         | .0002<br>.0030 | .019<br>.150         | .0001    | .011<br>.088         | .0001          | .005<br>.043         | .0000                    |
| 2.0                        | •466                 | .0118          | .328                 | .0082    | •204                 | .0049          | .098                 | .0024                    |
| 3.0                        | •736                 | .0342          | .517                 | .0239    | •343                 | .0151          | .160                 | .0072                    |
| 4.0                        | 1.036                | .0664          | .742                 | .0468    | .490                 | .0302          | .242                 | .0144                    |
| 4.8                        | 1.506                | .1029          | 1.112                | .0732    | .760                 | .0479          | .394                 | .0234                    |
| 5.0                        | 1.786                | .1149          | 1.378                | .0822    | 1.003                | .0542          | .597                 | .0268                    |
| 5.2                        | 2.494                | .1304          | 2.194                | .0951    | 1.916                | .0646          | 1.604                | .0345                    |
| 5.4                        | 3.650                | .1528          | 3.575                | .1160    | 3.512                | .0842          | 3.419                | .0525                    |
| 5.6                        | 5.204                | .1853          | 5.464                | .1491    | 5.730                | .1180          | 5.975                | .0868                    |
| 5.8                        | 6.992                | .2302          | 7.667                | .1974    | 8.350                | .1698          | 9.207                | .1419                    |
| 6.0                        | 8.492                | .2876          | 9.507                | .2611    | 10.530               | .2398          | 11.554               | .2182                    |
| 6.1                        | 8.993                | .3198          | 10.113               | .2972    | 11.237               | .2798          | 12.360               | .2622                    |
| 6.2                        | 9.340                | .3535          | 10.531               | .3352    | 11.722               | .3220          | 12.912               | .3087                    |
| 6.3                        | 9.523                | .3883          | 10.748               | .3744    | 11.972               | .3656          | 13.191               | •3567                    |
| 6.4                        | 9.476                | .4233          | 10.674               | .4138    | 11.860               | .4094          | 13.035               | •4049                    |
| 6.5                        | 9.286                | .4578          | 10.427               | .4526    | 11.551               | .4525          | 12.656               | •4521                    |
| 6.6                        | 8.978                | .4914          | 10.041               | .4903    | 11.079               | .4941          | 12.092               | •4976                    |
| 6.8                        | 8.120                | .5545          | 8.982                | .5604    | 9.805                | .5711          | 10.593               | •5812                    |
| 7.0                        | 7.135                | .6107          | 7.792                | .6222    | 8.398                | .6381          | 8.962                | .6531                    |
| 7.3                        | 5.694                | .6813          | 6.072                | .6984    | 6.386                | .71 <i>9</i> 2 | 6.657                | .7386                    |
| 7.6                        | 4.572                | .7377          | 4.765                | .7578    | 4.894                | .7809          | 4.985                | .8022                    |
| 8.0                        | 3.472                | .7967          | 3.505                | .8183    | 3.484                | .8421          | 3.439                | .8637                    |
| 8.5                        | 2.478                | .8511          | 2.385                | .8721    | 2.250                | .8944          | 2.113                | .9142                    |
| 9.0                        | 1.847                | .8904          | 1.701                | •9091    | 1.521                | .9284          | 1.358                | •9453                    |
| 9.5                        | 1.417                | .9203          | 1.245                | •9360    | 1.044                | .9518          | .871                 | •9656                    |
| 10.0                       | 1.129                | .9436          | .944                 | •9560    | .744                 | .9680          | .575                 | •9787                    |
| 10.6                       | .866                 | .9656          | .689                 | •9739    | .517                 | .9818          | .366                 | •9888                    |
| 11.2                       | .561                 | .9814          | .432                 | •9863    | .310                 | .9909          | .201                 | •9951                    |
| 12.0                       | .230                 | •9925          | .166                 | •9946    | .105                 | .9966          | .050                 | •9984                    |
| 13.0                       | .077                 | •9976          | .055                 | •9983    | .035                 | .9989          | .017                 | •9995                    |
| 14.0                       | .025                 | •9993          | .018                 | •9995    | .011                 | .9997          | .005                 | •9999                    |
| 16.0                       | 0                    | 1.0000         | 0                    | 1.0000   | 0                    | 1.0000         | 0                    | 1•0000                   |

|              |                      |                                       |                      |                         |                      |                         | $T_c = 60 h$                                                                                                                              | ours     |  |
|--------------|----------------------|---------------------------------------|----------------------|-------------------------|----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Serial       | No.: 89              | · · · · · · · · · · · · · · · · · · · | 90                   |                         | 91                   |                         | $T_{c} = 60 \text{ hours}$ 92 0.5 PSH PSMC $\frac{cfs/AQ_{10}}{Q/Q_{10}} = \frac{Q/Q_{10}}{Q/Q_{10}}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |          |  |
| ~ <u>]</u> / | <b>*10 : 0</b>       | •2                                    | 0.                   | 3                       | 0.1                  | ł                       | 0.                                                                                                                                        | 5        |  |
| Time         | PSH                  | PSMC                                  | PSH                  | PSMC                    | PSH                  | PSMC                    | PSH                                                                                                                                       | PSMC     |  |
| days         | cfs/AQ <sub>10</sub> | <u>ହ/ହ<sub>10</sub></u>               | cfs/AQ <sub>10</sub> | <u>Q/Q<sub>10</sub></u> | cfs/AQ <sub>10</sub> | <u>२/२<sub>10</sub></u> | c <u>fs/AQ</u> 10                                                                                                                         | <u> </u> |  |
| 0            | 0                    | 0                                     | 0                    | 0                       | 0                    | 0                       | 0                                                                                                                                         | 0        |  |
| .6           | .065                 | .0004                                 | .048                 | .0003                   | .036                 | .0002                   | .029                                                                                                                                      | .0002    |  |
| 1.3          | .506                 | .0068                                 | .380                 | .0051                   | .288                 | .0038                   | .226                                                                                                                                      | .0030    |  |
| 2.0          | 1.164                | .0286                                 | .890                 | .0216                   | .687                 | .0164                   | .533                                                                                                                                      | .0128    |  |
| 3.0          | 1.785                | .0844                                 | 1.430                | .0652                   | 1.119                | .0503                   | .896                                                                                                                                      | .0394    |  |
| 4.0          | 2.184                | .1580                                 | 1.848                | .1258                   | 1.515                | .0986                   | 1.244                                                                                                                                     | .0786    |  |
| 4.8          | 2.534                | .2276                                 | 2.298                | .1864                   | 2.008                | .1498                   | 1.713                                                                                                                                     | .1214    |  |
| 5.0          | 2.658                | .2468                                 | 2.483                | .2041                   | 2.229                | .1654                   | 1.949                                                                                                                                     | .1348    |  |
| 5.2          | 2.824                | .2670                                 | 2.769                | .2234                   | 2.617                | .1832                   | 2.423                                                                                                                                     | .1508    |  |
| 5.4          | 3.038                | .2887                                 | 3.168                | .2453                   | 3.189                | .2045                   | 3.160                                                                                                                                     | .1712    |  |
| 5.6          | 3.290                | .3121                                 | 3.665                | .2705                   | 3.929                | .2307                   | 4.142                                                                                                                                     | .1980    |  |
| 5.8          | 3.562                | .3374                                 | 4.221                | .2996                   | 4.777                | .2628                   | 5.287                                                                                                                                     | .2327    |  |
| 6.0          | 3.819                | .3648                                 | 4.757                | .3329                   | 5.606                | .3012                   | 6.420                                                                                                                                     | .2760    |  |
| 6.2          | 4.012                | .3938                                 | 5.150                | .3695                   | 6.204                | .3449                   | 7.221                                                                                                                                     | .3264    |  |
| 6.3          | 4.080                | .4088                                 | 5.286                | .3888                   | 6.411                | .3681                   | 7.499                                                                                                                                     | .3535    |  |
| 6.4          | 4.122                | .4239                                 | 5.366                | .4085                   | 6.526                | •3920                   | 7.645                                                                                                                                     | •3815    |  |
| 6.5          | 4.142                | .4392                                 | 5.399                | .4284                   | 6.570                | •4162                   | 7.694                                                                                                                                     | •4097    |  |
| 6.6          | 4.140                | .4546                                 | 5.388                | .4483                   | 6.544                | •4404                   | 7.650                                                                                                                                     | •4380    |  |
| 6.8          | 4.077                | .4850                                 | 5.237                | .4877                   | 6.293                | •4878                   | 7.284                                                                                                                                     | •4932    |  |
| 7.0          | 3.959                | .5148                                 | 4.981                | .5254                   | 5.890                | •5328                   | 6.723                                                                                                                                     | •5449    |  |
| 7.2          | 3.809                | .5435                                 | 4.671                | •5611                   | 5.415                | •5745                   | 6.078                                                                                                                                     | .5921    |  |
| 7.4          | 3.645                | .5711                                 | 4.339                | •5944                   | 4.912                | •6126                   | 5.402                                                                                                                                     | .6344    |  |
| 7.7          | 3.408                | .6102                                 | 3.881                | •6400                   | 4.242                | •6632                   | 4.525                                                                                                                                     | .6892    |  |
| 8.0          | 3.199                | .6469                                 | 3.493                | •6808                   | 3.698                | •7071                   | 3.838                                                                                                                                     | .7353    |  |
| 8.5          | 2.901                | .7032                                 | 2.958                | •7402                   | 2.976                | •7684                   | 2.946                                                                                                                                     | .7974    |  |
| 9.0          | 2.656                | •7546                                 | 2.535                | •7908                   | 2.430                | .8180                   | 2.283                                                                                                                                     | .8453    |  |
| 9.5          | 2.463                | •8019                                 | 2.224                | •8346                   | 2.055                | .8591                   | 1.839                                                                                                                                     | .8830    |  |
| 10.0         | 2.306                | •8460                                 | 1.985                | •8734                   | 1.769                | .8943                   | 1.510                                                                                                                                     | .9138    |  |
| 10.6         | 2.059                | •8948                                 | 1.708                | •9145                   | 1.456                | .9301                   | 1.199                                                                                                                                     | .9437    |  |
| 11.2         | 1.561                | •9354                                 | 1.277                | •9479                   | 1.055                | .9581                   | .859                                                                                                                                      | .9666    |  |
| 12.0         | .806                 | .9699                                 | .653                 | .9760                   | .529                 | .9810                   | .424                                                                                                                                      | .9852    |  |
| 13.0         | .308                 | .9891                                 | .245                 | .9914                   | .193                 | .9933                   | .150                                                                                                                                      | .9948    |  |
| 14.0         | .114                 | .9963                                 | .090                 | .9971                   | .070                 | .9978                   | .054                                                                                                                                      | .9983    |  |
| 16.0         | 0                    | 1.0000                                | 0                    | 1.0000                  | 0                    | 1.0000                  | 0                                                                                                                                         | 1.0000   |  |

|                   |                            |                |                            |                    |                      |               | $T_{c} = 60$         | hours    |
|-------------------|----------------------------|----------------|----------------------------|--------------------|----------------------|---------------|----------------------|----------|
| Serial            | No.: 93                    |                | 9 <sup>1</sup> i           |                    | 95                   |               | 96                   |          |
| ۹ <sub>1</sub> /۲ | Q <sub>10</sub> : 0        | •.6            | 0.'                        | 7                  | 0.                   | 8             | 0.                   | 9        |
| Time              | PSH                        | PSMC           | PSH                        | PSMC               | PSH                  | PSMC          | PSH                  | PSMC     |
| days              | <u>cfs/AQ<sub>l0</sub></u> | <u> </u>       | <u>cfs/AQ<sub>lO</sub></u> | <u> </u>           | cfs/AQ <sub>10</sub> | <u>Q/Q10</u>  | cfs/AQ <sub>10</sub> | <u> </u> |
| 0                 | 0                          | 0              | 0                          | 0                  | 0                    | 0             | 0                    | 0        |
| •6                | .022                       | .0001          | .014                       | .0001              | .008                 | .0000         | .004                 | .0000    |
| 1.5               | .170                       | .0023          | .118                       | .0016              | .069                 | .0009         | •034                 | .0004    |
| 2.0               | .405                       | •0097          | •285                       | .0067              | •T.(0                | .0040         | •084                 | .0019    |
| 5.0               | •683                       | .0299          | .480                       | .0210              | • 517                | .0132         | <b>.</b> ⊥40         | •0063    |
| 4.0               | •973                       | .0602          | •695                       | .0423              | •459                 | .0273         | .224                 | .0130    |
| 4.8               | 1.392                      | .0942          | 1.022                      | •0669              | •694                 | .0437         | •357                 | .0212    |
| 5.0               | 1.627                      | .1052          | 1.244                      | .0751              | •895                 | .0494         | •525                 | .0243    |
| 5.2               | 2.178                      | .1190          | 1.865                      | .0863              | 1.580                | .0582         | 1.268                | .0306    |
| 5.4               | 3.074                      | .1382          | 2.921                      | .1038              | 2.786                | .0741         | 2.626                | •0447    |
| 5.6               | 4.299                      | .1.652         | 4.394                      | .1305              | 4.503                | .1007         | 4.590                | .0709    |
| 5.8               | 5.750                      | .2022          | 6.161                      | .1692              | 6.582                | .1413         | 6.989                | .1133    |
| 6.0               | 7.197                      | .2499          | 7•936                      | .2212              | 8.687                | .1976         | 9.432                | .1738    |
| 6.2               | 8.204                      | .3069          | 9.151                      | •2844              | 10.102               | <b>.</b> 2670 | 11.047               | •2494    |
| 6.3               | 8,555                      | •3377          | 9•578                      | •3188              | 10.602               | •3050         | 11.622               | •2911    |
| 6.4               | 8.729                      | •3696          | 9•779                      | •35 <sup>4</sup> 5 | 10.824               | •3445         | 11.860               | •3342    |
| 6.5               | 8.782                      | .4018          | 9.835                      | •3906              | 10.878               | •3844         | 11.908               | •3780    |
| 6.6               | 8.718                      | .4340          | 9.750                      | •4266              | 10.768               | •4242         | 11.770               | .4215    |
| 6.8               | 8.230                      | .4966          | 9.138                      | •4963              | 10.016               | •5008         | 10.868               | •5049    |
| 7.0               | 7.507                      | •5546          | 8.255                      | <b>.</b> 5604      | 8.961                | •5707         | 9.633                | •5804    |
| 7.2               | 6.690                      | .6069          | 7.272                      | .6176              | 7.804                | .6324         | 8.298                | .6463    |
| 7•4               | 5.840                      | .6531          | 6.254                      | <b>.</b> 6673      | 6.610                | •6854         | 6.924                | .7022    |
| 7.7               | 4.765                      | •7116          | 4.994                      | <b>₀</b> 7293      | 5.162                | •7502         | 5.294                | •7694    |
| 8.0               | 3.946                      | •7595          | 4.055                      | 7791               | 4.109                | .8012         | 4.136                | .8212    |
| 8.5               | 2.903                      | •8220          | 2.874                      | .8422              | 2.803                | .8640         | 2,723                | .8834    |
| 9.0               | 2.142                      | .8681          | 2.027                      | .8868              | 1.876                | •9065         | 1.735                | •9237    |
| 9.5               | 1.657                      | <b>•90</b> 28  | 1.510                      | •9190              | 1.332                | •9356         | 1.178                | •9501    |
| 10.0              | 1.306                      | •9299          | 1.136                      | •9432              | •945                 | •9564         | •784                 | •9680    |
| 10.6              | •994                       | <b>.955</b> 2  | .821                       | •9647              | •647                 | •9738         | •495                 | •9819    |
| 11.2              | •693                       | •9739          | •558                       | •9798              | <b>.</b> 428         | •9855         | •312                 | •9906    |
| 12.0              | •33 <sup>1</sup> 4         | •9887          | .261                       | •9917              | .191                 | •9945         | .128                 | •9970    |
| 13.0              | .112                       | •9962          | .081                       | •9972              | .051                 | .9982         | .025                 | .9992    |
| 14.0              | .040                       | • <b>99</b> 87 | .029                       | •9991              | .018                 | •9994         | .009                 | •9997    |
| 16.0              | 0                          | 1.0000         | 0                          | 1.0000             | 0                    | 1.0000        | 0                    | 1.0000   |

|        |                                |                                       |                      |               |          |        | T <sub>c</sub> = 66 ( | hours        |
|--------|--------------------------------|---------------------------------------|----------------------|---------------|----------|--------|-----------------------|--------------|
| Serial | No.: 97                        | · · · · · · · · · · · · · · · · · · · | 98                   |               | 99       |        | 100                   |              |
| Q1/0   | <sup>Q</sup> 10 <sup>:</sup> 0 | .2                                    | 0.                   | 3             | 0.1      | ŧ      | 0.                    | 5            |
| Time   | PSH                            | PSMC                                  | PSH                  | PSMC          | PSH      | PSMC   | PSH                   | PSMC         |
| days   | cfs/AQ <sub>10</sub>           | <u>a/a10</u>                          | cfs/AQ <sub>10</sub> | <u>e/e</u> 10 | cfs/AQ10 | Q/Q10  | cfs/AQ10              | <u>Q/Q10</u> |
| 0      | 0                              | 0                                     | 0                    | 0             | 0        | 0      | 0                     | 0            |
| .6     | .050                           | .0003                                 | .037                 | .0002         | .028     | .0002  | .022                  | .0001        |
| 1.3    | .401                           | .0053                                 | .302                 | .0040         | .229     | .0030  | .179                  | .0023        |
| 2.0    | 1.008                          | .0234                                 | .769                 | .0177         | .593     | .0135  | .460                  | .0105        |
| 3.0    | 1.670                          | .0741                                 | 1.330                | .0572         | 1.039    | .0441  | .828                  | .0345        |
| 4.0    | 2.095                          | .1441                                 | 1.758                | .1143         | 1.431    | .0894  | 1.171                 | .0712        |
| 4.8    | 2.438                          | .2110                                 | 2.184                | .1720         | 1.887    | .1378  | 1.599                 | .1113        |
| 5.0    | 2.553                          | .2294                                 | 2.349                | .1888         | 2.082    | .1524  | 1.803                 | .1238        |
| 5.2    | 2.701                          | .2488                                 | 2.593                | .2070         | 2.406    | .1688  | 2.193                 | .1384        |
| 5.4    | 2.887                          | .2695                                 | 2.926                | .2273         | 2.872    | .1882  | 2.781                 | .1367        |
| 5.6    | 3.106                          | .2917                                 | 3.342                | •2505         | 3.478    | .2116  | 3.572                 | .1800        |
| 5.8    | 3.348                          | .3156                                 | 3.819                | •2769         | 4.191    | .2399  | 4.520                 | .2098        |
| 6.0    | 3.589                          | .3412                                 | 4.308                | •3070         | 4.934    | .2736  | 5.521                 | .2468        |
| 6.2    | 3.796                          | .3686                                 | 4.726                | •3404         | 5.570    | .3124  | 6.377                 | .2909        |
| 6.4    | 3.942                          | .3972                                 | 5.015                | •3765         | 6.003    | .3552  | 6.952                 | .3401        |
| 6.5    | 3.987                          | .4119                                 | 5.102                | .3952         | 6.129    | .3776  | 7.114                 | •3661        |
| 6.6    | 4.015                          | .4267                                 | 5.154                | .4141         | 6.205    | .4004  | 7.211                 | •3925        |
| 6.7    | 4.023                          | .4416                                 | 5.160                | .4332         | 6.204    | .4233  | 7.197                 | •4190        |
| 6.8    | 4.014                          | .4565                                 | 5.133                | .4522         | 6.157    | .4461  | 7.125                 | •4454        |
| 7.0    | 3.951                          | .4860                                 | 4.988                | .4897         | 5.921    | .4907  | 6.787                 | •4968        |
| 7.2    | 3.846                          | .5148                                 | 4.764                | .5257         | 5.571    | •5332  | 6.305                 | •5451        |
| 7.4    | 3.716                          | .5428                                 | 4.497                | .5600         | 5.165    | •5728  | 5.756                 | •5896        |
| 7.7    | 3.502                          | .5829                                 | 4.070                | .6074         | 4.528    | •6264  | 4.910                 | •6485        |
| 8.0    | 3.297                          | .6206                                 | 3.679                | .6504         | 3.964    | •6733  | 4.181                 | •6987        |
| 8.5    | 3.001                          | .6788                                 | 3.142                | .7132         | 3.230    | •7394  | 3.266                 | •7669        |
| 9.0    | 2.752                          | .7320                                 | 2.707                | .7671         | 2.661    | •7935  | 2.570                 | .8204        |
| 9.5    | 2.545                          | .7809                                 | 2.362                | .8138         | 2.228    | •8384  | 2.048                 | .8627        |
| 10.0   | 2.379                          | .8264                                 | 2.103                | .8549         | 1.917    | •8765  | 1.688                 | .8970        |
| 10.6   | 2.143                          | .8769                                 | 1.816                | .8985         | 1.585    | •9153  | 1.339                 | .9304        |
| 11.2   | 1.708                          | .9200                                 | 1.418                | .9346         | 1.196    | •9462  | .992                  | .9562        |
| 12.0   | .978                           | •9596                                 | .806                 | .9672         | .669     | •9734  | •552                  | .9787        |
| 13.0   | .410                           | •9839                                 | .332                 | .9872         | .269     | •9898  | •215                  | .9921        |
| 14.0   | .166                           | •9939                                 | .132                 | .9952         | .104     | •9962  | •081                  | .9971        |
| 17.0   | 0                              | 1.0000                                | 0                    | 1.0000        | 0        | 1.0000 | 0                     | 1.0000       |

•. .

Table 21.10.--(Continued)

|                             |                                           |                                           |                                           |                                           |                                            |                                           | T <sub>c</sub> = 66                           | hours                                     |
|-----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|
| Serial<br>Q <sub>1</sub> /0 | No.:101<br>210 : 0.                       | .6                                        | 102<br>0.7                                | 7                                         | 103<br>0.8                                 | 3                                         | 104<br>0.9                                    | 9                                         |
| Time                        | PSH                                       | PSMC                                      | PSH                                       | PSMC                                      | PSH                                        | PSMC                                      | PSH                                           | PSMC                                      |
| days                        | cfs/AQ <sub>10</sub>                      | <u> </u>                                  | cfs/AQ <sub>10</sub>                      | Q/Q <sub>10</sub>                         | cfs/AQ <sub>10</sub>                       | <u>Q/Q<sub>10</sub></u>                   | <u>cfs/AQ<sub>10</sub></u>                    | <u> Q/Q10</u>                             |
| 0                           | 0                                         | 0                                         | 0                                         | 0                                         | 0                                          | 0                                         | 0                                             | 0                                         |
| .6                          | .016                                      | .0001                                     | .011                                      | .0001                                     | .006                                       | .0000                                     | .003                                          | .0000                                     |
| 1.3                         | .135                                      | .0018                                     | .094                                      | .0012                                     | .055                                       | .0007                                     | .027                                          | .0003                                     |
| 2.0                         | .350                                      | .0079                                     | .246                                      | .0055                                     | .150                                       | .0033                                     | .072                                          | .0016                                     |
| 3.0                         | .631                                      | .0262                                     | .443                                      | .0183                                     | .291                                       | .0115                                     | .136                                          | .0055                                     |
| 4.0                         | •913                                      | .0544                                     | .650                                      | .0382                                     | .430                                       | .0246                                     | .209                                          | .0117                                     |
| 4.8                         | 1•292                                     | .0862                                     | .945                                      | .0612                                     | .638                                       | .0399                                     | .326                                          | .0193                                     |
| 5.0                         | 1•493                                     | .0964                                     | 1.132                                     | .0687                                     | .806                                       | .0451                                     | .466                                          | .0221                                     |
| 5.2                         | 1•939                                     | .1089                                     | 1.627                                     | .0786                                     | 1.347                                      | .0527                                     | 1.047                                         | .0273                                     |
| 5.4                         | 2•642                                     | .1256                                     | 2.441                                     | .0935                                     | 2.264                                      | .0659                                     | 2.065                                         | .0386                                     |
| 5.6                         | 3.615                                     | .1486                                     | 3.597                                     | .1156                                     | 3.598                                      | .0873                                     | 3.577                                         | •0593                                     |
| 5.8                         | 4.801                                     | .1795                                     | 5.028                                     | .1473                                     | 5.268                                      | .1198                                     | 5.492                                         | •0925                                     |
| 6.0                         | 6.067                                     | .2196                                     | 6.568                                     | .1900                                     | 7.079                                      | .1653                                     | 7.581                                         | •1406                                     |
| 6.2                         | 7.146                                     | .2685                                     | 7.876                                     | .2434                                     | 8.612                                      | .2234                                     | 9.340                                         | •2033                                     |
| 6.4                         | 7.864                                     | .3239                                     | 8.740                                     | .3048                                     | 9.617                                      | .2907                                     | 10.484                                        | •2764                                     |
| 6.5<br>6.6<br>6.8<br>7.0    | 8.061<br>8.181<br>8.151<br>8.052<br>7.608 | •3533<br>•3832<br>•4133<br>•4431<br>•5009 | 8.972<br>9.116<br>9.068<br>8.942<br>8.392 | •3374<br>•3707<br>•4042<br>•4373<br>•5012 | 9.878<br>10.044<br>9.970<br>9.814<br>9.146 | •3266<br>•3632<br>•4000<br>•4364<br>•5063 | 10.772<br>10.959<br>10.854<br>10.664<br>9.871 | .3155<br>.3555<br>.3956<br>.4351<br>.5108 |
| 7.2                         | 6.991                                     | •5547                                     | 7.645                                     | .5604                                     | 8.257                                      | •5704                                     | 8.836                                         | •5797                                     |
| 7.4                         | 6.301                                     | •6037                                     | 6.818                                     | .6136                                     | 7.288                                      | •6276                                     | 7.722                                         | •6406                                     |
| 7.7                         | 5.246                                     | •6674                                     | 5.567                                     | .6818                                     | 5.833                                      | •6998                                     | 6.063                                         | •7163                                     |
| 8.0                         | 4.361                                     | •7203                                     | 4.535                                     | .7375                                     | 4.654                                      | •7575                                     | 4.744                                         | •7757                                     |
| 8.5                         | 3.282                                     | •7902                                     | 3.309                                     | .8090                                     | 3.291                                      | •8298                                     | 3.259                                         | •8484                                     |
| 9.0                         | 2.480                                     | .8429                                     | 2.412                                     | .8612                                     | 2.306                                      | .8808                                     | 2.204                                         | .8981                                     |
| 9.5                         | 1.893                                     | .8828                                     | 1.768                                     | .8993                                     | 1.610                                      | .9164                                     | 1.472                                         | .9313                                     |
| 10.0                        | 1.506                                     | .9139                                     | 1.356                                     | .9278                                     | 1.183                                      | .9418                                     | 1.037                                         | .9541                                     |
| 10.6                        | 1.143                                     | .9431                                     | .980                                      | .9535                                     | .809                                       | .9636                                     | .662                                          | .9726                                     |
| 11.2                        | .821                                      | .9648                                     | .680                                      | .9717                                     | .543                                       | .9784                                     | .420                                          | .9844                                     |
| 12.0                        | .452                                      | .9832                                     | .371                                      | .9869                                     | •293                                       | .9904                                     | .224                                          | •9936                                     |
| 13.0                        | .168                                      | .9940                                     | .130                                      | .9956                                     | •093                                       | .9971                                     | .059                                          | •9985                                     |
| 14.0                        | .060                                      | .9978                                     | .044                                      | .9984                                     | •028                                       | .9990                                     | .013                                          | •9995                                     |
| 17.0                        | 0                                         | 1.0000                                    | 0                                         | 1.0000                                    | 0                                          | 1.0000                                    | 0                                             | 1.0000                                    |

|            |                      |                |                |                   |                  | T                       | $h_{e} = 72 \text{ ho}$ | urs             |
|------------|----------------------|----------------|----------------|-------------------|------------------|-------------------------|-------------------------|-----------------|
| Serial     | No.: 105             |                | 106            |                   | 107              |                         | 108                     |                 |
| $Q_1/q$    | <sub>5</sub> 10 : 0  | •2             | 0.             | 3                 | 0.1              | ł                       | 0.                      | 5               |
| Time       | PSH                  | PSMC           | PSH            | PSMC              | PSH              | PSMC                    | PSH                     | PSMC            |
| days       | cfs/AQ <sub>10</sub> | <u> Q/Q</u> 10 | cfs/AQ10       | <u>Q/Q10</u>      | cfs/AQ10         | <u>Q/Q10</u>            | cfs/AQ10                | <u> </u>        |
| 0          | 0                    | 0              | 0              | 0                 | 0                | 0                       | 0                       | 0               |
| .6         | .039                 | .0002          | .029           | .0002             | .022             | .0001                   | .017                    | .0001           |
| ⊥•)<br>20  | • 521<br>867         | .0042          | •241<br>660 ·  | .005L             | •183<br>508      | .0023                   | •⊥4 <i>5</i><br>305     | 0018<br>0086    |
| 3.0        | 1.552                | .0650          | 1.230          | .0500             | •959             | .0385                   | • <i>762</i>            | .0302           |
| 4.0        | 2-001                | 1311           | 1.668          | 1037              | 1.340            | 0810                    | 1,101                   | ÓGUL            |
| 4.8        | 2.345                | 1953           | 2.076          | .1586             | 1.777            | .1266                   | 1.497                   | .1021           |
| 5.0        | 2.452                | .2130          | 2.226          | <b>.</b> 1745     | 1.950            | .1403                   | 1.676                   | .1137           |
| 5•2<br>5-1 | 2,587                | •2317<br>251h  | 2.438          | •1917             | 2.226            | •1556                   | 2.001                   | .1272           |
| J•4        | 2.())                | • <i>2)</i> 14 | 2.(2)          | •210}             | 2.020            | •1(55                   | 2.492                   | •147(           |
| 5.6        | 2.946                | .2725          | 3.078          | .2322             | 3.123            | .1946                   | 3.136                   | .1643           |
| 5.8<br>6.0 | 3.383                | •2951<br>31.03 | 3.487<br>3.003 | •2564<br>2838     | 3. (21<br>1. 370 | -2198                   | 3.919                   | •1903           |
| 6.2        | 3.591                | •3451          | 4.338          | •2000<br>•3143    | 5,000            | •2491<br>•2843          | 5.629                   | .2608           |
| 6.4        | 3.755                | •3723          | 4.658          | •3476             | 5.477            | •3230                   | 6.257                   | .3047           |
| 6.6        | 3.863                | .4006          | 4.866          | .3829             | 5.782            | •3646                   | 6.655                   | .3524           |
| 6.7        | 3.895                | .4149          | 4.923          | .4010             | 5.862            | .3861                   | 6.755                   | ·3771           |
| 6.0<br>6.9 | 3.911                | •4294<br>」加38  | 4.948<br>1.013 | ·4192             | 5,894<br>5,870   | .4078<br>h205           | 6.790<br>6.762          | .4021           |
| 7.0        | 3.899                | .4583          | 4.908          | •4557             | 5.819            | .4511                   | 6.672                   | •4211<br>•4518  |
| 7.2        | 3.838                | 4869           | 4.772          | <u>.</u> 4915     | 5,601            | 4933                    | 6.364                   | 5000            |
| 7.5        | 3.689                | .5288          | 4.460          | •5428             | 5.121            | .5528                   | 5.712                   | .5669           |
| 8.0        | 3.378                | •5942          | 3.844          | •61.95            | 4.210            | .6388                   | 4.508                   | .6610           |
| 0•7<br>9•0 | 2.000<br>2.840       | •6540<br>•7088 | 3.303          | •6853<br>.71,22   | 3.454<br>2.87h   | .7091<br>7673           | 3.550<br>2.836          | •7347           |
|            | - (-0                |                | 2.000          | •1                |                  | •[0]                    | 2.000                   | • [ 904         |
| 9•5        | 2.628<br>2.150       | •7593<br>8062  | 2,507          | •7918<br>8353     | 2.418            | •8160                   | 2.284                   | •8404<br>8787   |
| 10.6       | 2.222                | .8583          | 1.925          | .8813             | 2.004            | .8990                   | 1.491                   | •0105<br>•9153  |
| 11.2       | 1.836                | 9037           | 1.551          | •9200             | 1.337            | .9330                   | 1.131                   | ·9444           |
| 15.0       | 1.142                | •9478          | •954           | •9570             | .804             | .•9644                  | •673                    | •9708           |
| 13.0       | •523                 | •9774          | •435           | •9816             | .365             | •9851                   | <b>.</b> 305            | .9880           |
| 14.0       | .229                 | •9906<br>0047  | .185           | •9925             | .150             | •9941                   | <b>.</b> 119            | ·9954           |
| 17.0       | 0                    | 1.0000         | 0,010          | • 77 (1<br>1.0000 | -002<br>0        | • <i>7911</i><br>1.0000 | •040<br>0               | •9902<br>1.0000 |

Table 21.10.--(Continued)

.....

|                            |                                 |                |                            |              |                      |          | $T_{c} = 72$         | hours        |
|----------------------------|---------------------------------|----------------|----------------------------|--------------|----------------------|----------|----------------------|--------------|
| Serial<br>Q <sub>1</sub> / | No.: 109<br>Q <sub>10</sub> : 0 | .6             | 011<br>0.                  | 7            | 111<br>0.8           | 8        | 112<br>0.            | 9            |
| Time                       | PSH                             | PSMC           | PSH                        | PSMC         | PSH                  | PSMC     | PSH                  | PSMC         |
| days                       | cfs/AQ <sub>10</sub>            | <u> Q/Q</u> 10 | <u>cfs/AQ<sub>10</sub></u> | <u>Q/Q10</u> | cfs/AQ <sub>10</sub> | <u> </u> | cfs/AQ <sub>l0</sub> | <u>Q/Q10</u> |
| 0                          | 0                               | 0              | 0                          | 0            | 0                    | 0        | 0                    | 0            |
| .6                         | .013                            | .0001          | .009                       | .0000        | .005                 | .0000    | .002                 | .0000        |
| 1.3                        | .108                            | .0014          | .075                       | .0010        | .044                 | .0006    | .021                 | .0003        |
| 2.0                        | .300                            | .0065          | .210                       | .0045        | .128                 | .0027    | .062                 | .0013        |
| 3.0                        | .581                            | .0229          | .408                       | .0160        | .266                 | .0100    | .125                 | .0048        |
| 4.0                        | .856                            | .0492          | .608                       | .0345        | .402                 | .0222    | .194                 | .0105        |
| 4.8                        | 1.202                           | .0789          | .876                       | .0559        | .590                 | .0364    | .299                 | .0176        |
| 5.0                        | 1.378                           | .0884          | 1.037                      | .0629        | .733                 | .0412    | .419                 | .0201        |
| 5.2                        | 1.744                           | .0997          | 1.437                      | .0717        | 1.164                | .0478    | .877                 | .0245        |
| 5.4                        | 2.324                           | .1146          | 2.103                      | .0847        | 1.910                | .0590    | 1.701                | .0338        |
| 5.6                        | 3.106                           | .1345          | 3.019                      | .1034        | 2.956                | .0768    | 2.874                | .0505        |
| 5.8                        | 4.072                           | .1609          | 4.171                      | .1298        | 4.288                | .1033    | 4.388                | .0771        |
| 6.0                        | 5.156                           | .1948          | 5.478                      | .1653        | 5.814                | .1405    | 6.136                | .1157        |
| 6.2                        | 6.221                           | .2368          | 6.771                      | .2104        | 7.334                | .1889    | 7.888                | .1673        |
| 6.4                        | 7.001                           | .2856          | 7.705                      | .2638        | 8.413                | .2469    | 9.111                | .2299        |
| 6.6                        | 7.491                           | •3391          | 8.290                      | .3228        | 9.085                | .3114    | 9.867                | •2999        |
| 6.7                        | 7.610                           | •3669          | 8.427                      | .3536        | 9.237                | .3451    | 10.032               | •3365        |
| 6.8                        | 7.647                           | •3950          | 8.467                      | .3847        | 9.275                | .3792    | 10.065               | •3734        |
| 6.9                        | 7.604                           | •4231          | 8.411                      | .4157        | 9.200                | .4132    | 9.969                | •4102        |
| 7.0                        | 7.483                           | •4508          | 8.258                      | .4464        | 9.010                | .4467    | 9.739                | •4465        |
| 7.2                        | 7.083                           | •5046          | 7.767                      | •5055        | 8.420                | •5109    | 9.044                | •5157        |
| 7.5                        | 6.257                           | •5784          | 6.775                      | •5860        | 7.251                | •5976    | 7.693                | •6082        |
| 8.0                        | 4.767                           | •6797          | 5.015                      | •6942        | 5.213                | •7118    | 5.380                | •7278        |
| 8.5                        | 3.622                           | •7563          | 3.698                      | •7735        | 3.728                | •7930    | 3.742                | •8104        |
| 9.0                        | 2.792                           | •8151          | 2.765                      | •8327        | 2.699                | •8518    | 2.632                | •8686        |
| 9.5                        | 2.166                           | .8606          | 2.075                      | .8770        | 1.950                | .8943    | 1.839                | •9095        |
| 10.0                       | 1.700                           | .8958          | 1.568                      | .9101        | 1.411                | .9247    | 1.275                | •9376        |
| 10.6                       | 1.311                           | .9290          | 1.161                      | .9401        | 1.001                | .9511    | .863                 | •9609        |
| 11.2                       | .962                            | .9540          | .822                       | .9619        | .683                 | .9695    | .559                 | •9764        |
| 12.0                       | .561                            | .9762          | .470                       | .9806        | .381                 | .9849    | .301                 | •9887        |
| 13.0                       | .253                            | .9906          | .212                       | •9927        | .172                 | •9947    | .136                 | •9965        |
| 14.0                       | .092                            | .9966          | .069                       | •9975        | .047                 | •9984    | .027                 | •9992        |
| 15.0                       | .036                            | .9987          | .026                       | •9991        | .016                 | •9994    | .008                 | •9997        |
| 17.0                       | 0                               | 1.0000         | 0                          | 1.0000       | 0                    | 1.0000   | 0                    | 1•0000       |



FIGURE 21.1 - Mass curves of runoff in various arrangements.



. ...









Emergency Spillways 1

Flows larger than those completely controllable by the principal spillway and retarding storage are safely conveyed past an earth dam by an emergency spillway. The emergency spillway is designed by use of an Emergency Spillway Hydrograph (ESH) and its minimum freeboard determined by use of a Freeboard Hydrograph (FH). Both kinds of hydrographs are constructed by the same procedure. There is a small difference in that procedure depending on whether a watershed's time of concentration is or is not over six hours.

This part of the chapter presents a manual method of developing ESH and FH. The method requires the use of the dimensionless hydrographs given in table 21.17. Methods of routing the ESH or FH through structures are given in chapter 17.

Alternatives to developing and routing the hydrographs manually are (i) use of the SCS electronic computer program, in which basic data are input and the ESH or FH, the routed hydrograph, and reservoir elevations are output; and (ii) the Upper Darby or UD method, in which no hydrograph is needed but which uses the hydrograph characteristics of ESH or FH in an indirect routing procedure with results in terms of spillway elevation and capacity.

The hydrologic criteria given below apply to the manual method and its alternatives. The examples that follow apply only to the manual method.

#### Hydrologic Criteria

SOURCE OF DESIGN STORM RAINFALL AMOUNT. The basic 6-hour design storm rainfall amount used in development of ESH and FH is taken from one of the following maps:

<sup>1/</sup> Background information on the material in this part of the chapter is given in "Central Technical Unit Method of Hydrograph Development," by M. H. Kleen and R. G. Andrews, Transactions, American Society of Agricultural Engineers, vol. 5, no. 2, p. 180-185, 1962; and in "Hydrology of Spillway Design: Small Structures - Limited Data," by Harold O. Ogrosky, paper no. 3914, Proceedings, American Society of Civil Engineers, Journal of the Hydraulics Division, May 1964.

ES-1020, 5 sheets. 48 contiguous States. Supplementary sheets for California and Washington-Oregon are also given.
ES-1021, 5 sheets. Hawaii.
ES-1022, 5 sheets. Alaska.
ES-1023, 5 sheets. Puerto Rico.
ES-1024, 5 sheets. Virgin Islands.

The rainfall amounts on these maps are minimums allowed by SCS criteria for various classes of structures.

DURATION ADJUSTMENT OF RAINFALL AMOUNT. If the time of concentration of the drainage area above a structure is more than six hours, the duration of the design storm is made equal to that time and the rainfall amount is increased using a factor from figure 21.2, part (c).

AREAL ADJUSTMENT OF RAINFALL AMOUNT. If the drainage area above a structure is 10 square miles or less, the areal rainfall is the same as the rainfall taken from the maps of ES-1020 through 1024. If the area is over 10 square miles but not over 100 square miles, the areal rainfall is obtained by use of a factor from figure 21.2, part (a). If the area is over 100 square miles, the adjustment factor for the area is requested from the Engineering Division, Washington, D. C. When a request is submitted, the following information about the area should also be submitted: (1) location, preferably the latitude and longitude of the watershed outlet; (2) size in square miles; (3) length in miles, following the main valley; (4) time of concentration in hours; (5) runoff curve number; (6) proposed value of the adjustment or adjustment factor. If a factor is also needed for a subwatershed of that watershed, then similar information about the subwatershed should also be submitted.

<u>RUNOFF DETERMINATION</u>. Runoff is determined using the methods of chapter 10. The runoff curve number (CN) for the drainage area above a structure is determined by any of the methods in chapter 10. This CN must be for antecedent moisture condition II or greater and it applies throughout the design storm regardless of the storm duration.

DIMENSIONLESS HYDROGRAPHS. The ESH and FH are made using the dimensionless hydrographs given in table 21.17. If a hydrograph is to be developed in an electronic computer program, then the storm distribution given in figure 21.2.b (ES-1003-b) must be used to get an equivalent ESH or FH.

## Construction of Emergency Spillway and Freeboard Hydrographs

Two examples of hydrograph construction are given. The first illustrates the procedure when the watershed time of concentration is not over six hours, the second when it is. There is no difference in procedure for ESH and FH. Equations used in the examples are listed in table 21.11.

Example 21.5.--Construct an ESH for a class (b) structure with a drainage area of 1.86 square miles, time of concentration of 1.25 hours, CN of 82, and location at latitude\_\_\_\_, longitude\_\_\_\_.

1. Determine the 6-hour design storm rainfall amount, P. For this structure class the ESH rainfall amount is taken from ES-1020, sheet 2 of 5. For the given location the map shows that P = 9.4 inches.

2. <u>Determine the areal rainfall amount</u>. The areal rainfall is the same as in step 1 because the drainage area is not over 10 square miles. Step 2 of example 21.6 shows the process.

3. <u>Make the duration adjustment of rainfall amount</u>. No adjustment is made because the time of concentration is not over six hours. Step 3 of example 21.6 shows the process.

4. Determine the runoff amount, Q. Enter figure 10.1 with P = 9.4 inches and CN = 82 and find Q = 7.21 inches.

5. Determine the hydrograph family. Enter figure 21.3 (ES-1011) with CN = 82 and at P = 9.4 read hydrograph family 2.

6. Determine the duration of excess rainfall,  $T_0$ . Enter figure 21.4 (ES-1012) with P = 9.4 inches and at CN = 82 read by interpolation that  $T_0 = 5.37$  hours.

7. Compute the initial value of  $T_p$ . By equation 21.4 this is 0.7(1.25) = 0.88 hours.

8. Compute the  $T_0/T_p$  ratio. This is 5.37/0.88 = 6.10.

9. Select a revised  $T_0/T_p$  ratio from table 21.16. This table shows the hydrograph families and ratios for which dimensionless hydrographs are given in table 21.17. Enter table 21.16 with the ratio from step 8 and select the tabulated ratio nearest it. For this example the selected ratio,  $(T_0/T_p)$  rev., is 6.

10. Compute Rev.  $T_p$ . This is a revised  $T_p$  used because of the change in ratio. By equation 21.5, Rev.  $T_p = 5.37/6 = 0.895$  hours.

11. <u>Compute qp</u>. By equation 21.6 this is 484(1.86)/0.895 = 1006 cfs.

12. Compute Qqp. Using the Q from step 4 and the qp from step 11 gives  $Q(q_p) = 7.21(1006) = 7253.26$  cfs. Round to 7250 cfs.

13. Compute the times for which hydrograph rates will be computed. In equation 21.7 use Rev. Tp from step 10 and the entries in the  $t/T_p$  column of the selected hydrograph in table 21.17. The computed times are shown in column 2 of table 21.12.

Table 21.11--Equations used in construction of ESH and FH

|       | Equation                                            | No.      |
|-------|-----------------------------------------------------|----------|
|       | $T_p = 0.7 T_c$                                     | 21.4     |
|       | Rev. $T_p = \frac{T_o}{(T_o/T_p)_{rev.}}$           | 21.5     |
|       | $q_{p} = \frac{484 \text{ A}}{\text{Rev. } T_{p}}$  | 21.6     |
|       | $t = (t/T_p)$ (Rev. $T_p$ )                         | 21.7     |
|       | $q = (q_c/q_p) Q_{qp}$                              | 21.8     |
| where | A = drainage area in square miles                   |          |
|       | q = hydrograph rate in cfs                          |          |
|       | $Q_C$ = hydrograph rate in cfs when $Q$ = 1 inch    |          |
|       | $q_p$ = hydrograph peak rate in cfs when Q = 1 inc  | h        |
|       | Q = design storm runoff in inches                   |          |
|       | Rev. $T_p$ = revised time to peak in hours          |          |
|       | t = time in hours at which hydrograph rate is       | computed |
|       | $T_{c}$ = time of concentration in hours            |          |
|       | $T_{O}$ = duration of excess rainfall in hours      |          |
|       | $(T_o/T_p)_{rev.}$ = revised ratio from table 21.16 |          |
|       | $T_p$ = time to peak in hours for CTU design hydro. | graphs   |

14. Compute the hydrograph rates. Use equation 21.8 and the  $q_c/q_p$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 3 of table 21.12.

The hydrograph is completed with step 14. How the hydrograph is further retabulated or plotted for routing through the spillway depends on the routing method to be used. See chapter 17 for routing details.

The mass curve for the hydrograph can be obtained using the  $Q_t/Q$  column of the selected hydrograph in table 21.17. Ratios in that column are multiplied by the Q of step 4 to give accumulated runoff in inches at the time computed in step 13. For accumulated runoff in acre-feet or another unit, convert Q to the desired unit before making the series of multiplications.

In the following example the storm duration is increased because the time of concentration is over six hours. Increasing the duration also requires increasing the rainfall amount but if the drainage area is over 10 square miles the increase is partly offset by the decrease in areal rainfall.

Example 21.6.--Construct a FH for a class (c) structure with a drainage area of 23.0 square miles, time of concentration of 10.8 hours, CN of 77, and location at latitude\_\_\_\_, longitude\_\_\_\_.

1. Determine the 6-hour design storm rainfall amount, P. For this structure class the FH rainfall amount is taken from ES-1020, sheet 5 of 5. For the given location the map shows that P = 25.5 inches.

2. Determine the areal rainfall amount. Use the appropriate curve on figure 21.2.a (ES-1003-a). For this location the "Humid and subhumid climate" curve applies and the adjustment factor for the drainage area of 23.0 square miles is 0.93. The adjusted rainfall is 0.93(25.5) = 23.72 inches.

3. <u>Make the duration adjustment of rainfall amount</u>. The duration is made equal to the time of concentration, in this case, 10.8 hours. Enter figure 21.2.c (ES-1003-c) with the duration of 10.8 hours and find an adjustment factor of 1.18. The adjusted rainfall is 1.18(23.72) = 27.99 inches. It is rounded to 28.0 inches for the remainder of this example.

4. Determine the runoff amount, Q. Enter figure 10.1 with the rainfall from step 3 (P = 28.0 inches) and at CN = 77 find Q = 24.7 inches.

5. Determine the hydrograph family. Enter figure 21.3 (ES-1011) with CN = 77 and at P = 28.0 inches read hydrograph family 1.

6. Determine the duration of excess rainfall,  $T_0$ . Enter table 21.14 with CN = 77 and find that P\*, the rainfall prior to the excess rainfall, is 0.60 inches. Enter table 21.15 with the ratio P\*/P = 0.60/28.0 = 0.0214 and by interpolation read a time ratio of 0.950. Then To = (time ratio) x (storm duration) = 0.950(10.8) = 10.26 hours.

| 21 |   | 54 |
|----|---|----|
|    | - | -  |

#### SCS-ENG-319 Rev. 1-70 File Code ENG-13-14

| HYDROGRAPH COMPU                                                                                                                                            | TATIC   | IN COMPL<br>CHECK   | JTED BY                                                 |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------------------------------------------------------|--------------------------------------|
|                                                                                                                                                             |         | $t=(t/T_p)Rev. T_p$ | q=(q <sub>c</sub> /q <sub>p</sub> )(Q)(q <sub>p</sub> ) | Q <sub>t</sub> =(Q <sub>t</sub> /Q)Q |
| WATERSHED OR PROJECT (EXAMPLE 21.5)                                                                                                                         |         | 1                   | P                                                       | Q                                    |
|                                                                                                                                                             |         | HOURS               | CFS                                                     | INCHES                               |
| STATE                                                                                                                                                       | 1       | 0                   | 0                                                       | 0                                    |
|                                                                                                                                                             | 2       | .30                 | 7                                                       | ·····                                |
| STRUCTURE SITE OR SUBAREA                                                                                                                                   | 3       | .61                 | -36                                                     |                                      |
|                                                                                                                                                             | 4       | .91                 | 109                                                     |                                      |
| DR. AREA 1.86 SO. MI. STRUCTURE CLASS 6                                                                                                                     | 5       | 1.22                | 268                                                     |                                      |
| •                                                                                                                                                           | 6       | 1.52                | 710                                                     |                                      |
| THR. STORM DURATIONG HR.                                                                                                                                    | <u></u> | 1.82                | 1769                                                    |                                      |
|                                                                                                                                                             | 8       | 2.13                | 2951                                                    |                                      |
|                                                                                                                                                             | 9       | 2.43                | 3364                                                    |                                      |
|                                                                                                                                                             | 10      | 2.74                | 3110                                                    |                                      |
| AREAL : FACTOR IN                                                                                                                                           | 11      | 3.04                | 2661                                                    |                                      |
| DURATION : . FACTOR <u>1.0</u> IN. <u>9.4</u>                                                                                                               | 12      | 3.35                | 2240                                                    |                                      |
|                                                                                                                                                             | 13      | 3.65                | /892                                                    |                                      |
|                                                                                                                                                             | 14      | 3.96                | 1624                                                    |                                      |
| Q <u>7.2/</u> IN.                                                                                                                                           | 15      | 4.26                | 1399                                                    |                                      |
| HYDROGRAPH FAMILY NO                                                                                                                                        | 16      | 4.56                | 1225                                                    |                                      |
|                                                                                                                                                             | 17      | 4.87                | 1102                                                    |                                      |
| COMPUTED T                                                                                                                                                  | 18      | 5.17                | 1008                                                    | <u>_</u>                             |
| ••••••••••••••••••••••••••••••••••••••                                                                                                                      | 19      | 5.48                | 935                                                     |                                      |
| T. <u>5.37</u> HR.                                                                                                                                          | 20      | 5.78                | 819                                                     |                                      |
| ·0                                                                                                                                                          | 21      | 6.09                | 616                                                     |                                      |
| (T <sub>0</sub> / T <sub>0</sub> ):                                                                                                                         | 22      | 6.39                | 399                                                     |                                      |
| COMPUTED USED                                                                                                                                               | 23      | 6.69                | 254                                                     |                                      |
|                                                                                                                                                             | 24      | 7.00                | 145                                                     |                                      |
| REVISED T                                                                                                                                                   | 20      | 7.30                | 87                                                      | <u> </u>                             |
| F                                                                                                                                                           |         | 7.61                | 58                                                      |                                      |
| $q_p = \frac{484A}{\text{REV. T}} = \frac{7006}{\text{CFS.}}$                                                                                               |         | 7.91                | 36                                                      |                                      |
| 1250                                                                                                                                                        |         | 8.22                | 29                                                      | L                                    |
| $(Ulq_p) = $                                                                                                                                                | 29      | 8.52                | 22                                                      |                                      |
|                                                                                                                                                             | 30      | 8.82                | 14                                                      |                                      |
| $\mathfrak{g}(OLD(M,M)) \approx \{\mathfrak{l} \setminus \mathfrak{p}\} KFA \cdot \mathfrak{p} \qquad \mathfrak{g}(OLD(M,M)) \approx \{\mathfrak{g}(Q,Q)\}$ | 31      | 9.13                |                                                         |                                      |
| 0/0011000 /0./0.0                                                                                                                                           | 37      | 9.43                | 0                                                       | <u> </u>                             |
| $(\mathbf{U}_{\mathbf{U}}, \mathbf{U}_{\mathbf{U}}, \mathbf{U}_{\mathbf{U}}) = (\mathbf{U}_{\mathbf{U}}, \mathbf{U}_{\mathbf{U}})$                          | 33      | <u> </u>            | <u> </u>                                                |                                      |
|                                                                                                                                                             | 1 34    | 1                   | 1                                                       | 1                                    |

Table 21.12 Hydrograph computation

NEH Notice 4-102, August 1972

.

8. Compute the To/Tp ratio. This is 10.26/7.56 = 1.357.

9. Select a revised  $T_0/T_p$  ratio from table 21.16. Enter table 21.16 with the ratio from step 8 and select the tabulated ratio nearest it. For this example the selected ratio,  $(T_0/T_p)$ rev., is 1.5.

10. Compute Rev.  $T_p$ . This is a revised  $T_p$  used because of the change in ratio. By equation 21.5, Rev.  $T_p = 10.26/1.5 = 6.84$  hours.

11. Compute  $q_p$ . By equation 21.6 this is 484(23.0)/6.84 = 1627.5 cfs. Round to 1628 cfs.

12. Compute  $Qq_p$ . Using the Q from step 4 and the  $q_p$  from step 11 gives  $Q(q_p) = 24.7(1628) = 40,211.6$  cfs. Round to 40,212 cfs.

13. Compute the times for which hydrograph rates will be computed. Use equation 21.7 with the Rev.  $T_p$  from step 10 and the entries in the  $t/T_p$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 2 of table 21.13.

14. Compute the hydrograph rates. Use equation 21.8 with  $Qq_p$  of step 12 and the  $q_c/q_p$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 3 of table 21.13.

| 21. | • | 56 |
|-----|---|----|
|     |   |    |

### SCS-ENG-319 Rev. 1-70 File Code ENG-13-14

| HYDROGRAPH COMPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TATIO | DATE<br>N COMP<br>CHEC                   | UTED BY                 |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|-------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | t=(t/T <sub>p</sub> )Rev. T <sub>p</sub> | $q = (q_c/q_p)(Q)(q_p)$ | $Q_t = (Q_t/Q)Q$ |
| WATERSHED OR PROJECT (EXAMPLE 21.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | t                                        | q                       | Q                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | HOURS                                    | CFS                     | INCHES           |
| STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 0                                        | 0                       | 0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | 2.19                                     | 482                     |                  |
| STRUCTURE SITE OR SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3     | 4.38                                     | 4745                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     | 6.57                                     | 15160                   |                  |
| DR. AREA 23.0 SQ. MI. STRUCTURE CLASS C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5     | 8.76                                     | 28591                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6     | 10.94                                    | 32773                   |                  |
| T 10.8 HR. STORM DURATION 10.8 HR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7     | 13.13                                    | 28912                   |                  |
| POINT RAINFALL 25.5 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8     | 15.32                                    | 21152                   |                  |
| ADJUSTED RAINFALL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9     | 17.51                                    | 14155                   |                  |
| 10541 FLOTOD 93 IN 23.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10    | 19.70                                    | 9048                    |                  |
| AREAL : FACTUR IN. 23.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11    | 21.89                                    | 5150                    |                  |
| DURATION : FACTOR _ <u>7.78</u> IN. <u>27.99</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12    | 24.08                                    | 3619                    |                  |
| RUNOFF CURVE NO. 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13    | 26,26                                    | 2292                    |                  |
| 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14    | 28.45                                    | 1488                    |                  |
| Q <u>27.7</u> IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15    | 30.64                                    | 965                     |                  |
| HYDROGRAPH FAMILY NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16    | 32,83                                    | 603                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 35.02                                    | 322                     |                  |
| COMPUTED T HR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18    | 37.21                                    | 161                     |                  |
| ۴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19    | 39.40                                    | 80                      |                  |
| T <u>. 10.26</u> HR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20    | 41.59                                    |                         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21    | <u> </u>                                 | 0                       |                  |
| (T <sub>o</sub> / T <sub>p</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 22  |                                          |                         |                  |
| COMPUTED <u>/357</u> ; USED <u>/5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20    |                                          |                         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24    |                                          |                         |                  |
| REVISED T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25    |                                          |                         |                  |
| - MAA //-28 are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77    |                                          |                         |                  |
| $q = \frac{1}{\text{REV. T}} = \frac{1}{2} \frac{1}{2$ | 28    |                                          |                         |                  |
| $(0Y_0) = 40.2/2.$ CFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29    |                                          |                         |                  |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30    |                                          | ·                       |                  |
| $t(COLUMN) = (t/T_) REV. T_ q(COLUMN) = (q_/q_XQXq_)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31    |                                          |                         |                  |
| уу <sup>с</sup> т <sup>уст</sup> <sup>у</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32    |                                          |                         |                  |
| Q(COLUMN) = (Q, /Q)Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33    |                                          |                         |                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34    |                                          |                         |                  |

...

Table 21.13 Hydrograph computation.

NEH Notice 4-102, August 1972

Table 21.14.--Rainfall prior to excess rainfall.

| CN  | P*       | CN | P*       | CN | P*       | CN | P*       | CN | P*                           |
|-----|----------|----|----------|----|----------|----|----------|----|------------------------------|
|     | (inches) |    | (inches) |    | (inches) |    | (inches) |    | (inches)                     |
| 100 | 0        | 86 | 0.33     | 72 | 0.78     | 58 | 1.45     | կկ | 2.54                         |
| 99  | .02      | 85 | •35      | 71 | .82      | 57 | 1.51     | 43 | 2.64                         |
| 98  | .04      | 84 | •38      | 70 | .86      | 56 | 1.57     | 42 | 2.76                         |
| 97  | •06      | 83 | .41      | 69 | .90      | 55 | 1.64     | 41 | 2.88                         |
| 96  | .08      | 82 | . 44     | 68 | •94      | 53 | 1.70     | 40 | 3.00                         |
| 95  | .11      | 81 | •47      | 67 | •98      | 53 | 1.77     | 39 | 3.12                         |
| 94  | .13      | 80 | •50      | 66 | 1.03     | 52 | 1.85     | 38 | 3.26                         |
| 93  | .15      | 79 | •53      | 65 | 1.08     | 51 | 1.92     | 37 | 3.40                         |
| 92  | .17      | 78 | •56      | 64 | 1.12     | 50 | 2.00     | 36 | 3.56                         |
| 91  | .20      | 77 | .60      | 63 | 1.17     | 49 | 2.08     | 35 | 3.72                         |
| 90  | .22      | 76 | .63      | 62 | 1.23     | 48 | 2.16     | 34 | 3.88                         |
| 89  | .25      | 75 | .67      | 61 | 1.28     | 47 | 2.26     | 33 | 4.06                         |
| 88  | .27      | 74 | •70      | 60 | 1.33     | 46 | 2.34     | 32 | 4.24                         |
| 87  | •30      | 73 | •74      | 59 | 1.39     | 45 | 2.44     | 31 | <del>ի</del> • <del>իի</del> |

| Rain-<br>fall<br>ratio | Time<br>ratio | Rain-<br>fall<br>ratio | Time<br>ratio    | Rain-<br>fall<br>ratio | Time<br>ratio  | Rain-<br>fall<br>ratio | Time<br>rati |
|------------------------|---------------|------------------------|------------------|------------------------|----------------|------------------------|--------------|
|                        | 1 000         | 0.070                  | 0 850            | 0.10                   | 0.746          | 0 210                  | 0.68         |
| 000                    | 1,000         | 0.070                  | 818              | 140                    | 7).)           | 0.210                  | 68           |
| -002<br>00h            | •992          | •0 <u>12</u><br>07)    | -040<br>8hh      | •⊥+⊂<br>1 h h          | • (44<br>7]10  | •212<br>21h            | -00<br>68    |
| .004                   | - 995         | .076                   | .841             | .146                   | • [十二<br>_ 7山〇 | .216                   | .67          |
| .008                   | .981          | .078                   | .837             | .148                   | •739           | .218                   | .67          |
| .010                   | •976          | .080                   | .833             | .150                   | •737           | .220                   | .67          |
| .012                   | .971          | .082                   | .830             | .152                   | •735           | .222                   | .67          |
| .014                   | .967          | •084                   | .827             | .154                   | •733           | <u>,224</u>            | •67          |
| .016                   | •962          | .086                   | .824             | .156                   | •732           | .226                   | .67          |
| .018                   | •957          | .088                   | .821             | .158                   | •730           | .228                   | •66          |
| .020                   | •952          | .090                   | .818             | .160                   | .728           | .230                   | .66          |
| .022                   | •948          | .092                   | .815             | .162                   | .726           | •232                   | •66          |
| .024                   | •943          | •094                   | .812             | .164                   | •724           | 234                    | •66          |
| .026                   | •938          | <b>.0</b> 96           | .809             | .166                   | •723           | .236                   | •66          |
| •028                   | •933          | •098                   | <b>.80</b> 6     | .168                   | .721           | .238                   | •66          |
| .030                   | •929          | .100                   | .803             | .170                   | .719           | <b>.</b> 240           | •66          |
| •032                   | .924          | .102                   | •800             | .172                   | .717           |                        |              |
| •034                   | .919          | .104                   | •797             | 174                    | .716           | (Chang                 | e in         |
| •036                   | .915          | .106                   | •79 <sup>4</sup> | .176                   | •714           | tabul                  | ation        |
| •038                   | •911          | .108                   | •791             | .178                   | .712           | incre                  | ment.)       |

.785

.782

•779 •776

•773 •770

.767

.764

.761

.758

•755

.751

•749

.747

.180

.182

.184

.186

.188

.190

.192

.194

.196

.198

.200

.202

.204

.206

.208

.710

.709

.707

.705

.703

.702

.700

.698

.696

.695

.693

.691

.689

.687

.686

.110

.112

.114

.116

8בב.

.120

.122

.124

.126

.128

.130

.132

.134

.136

.138

when the storm ~ m

> Time ratio

0.684 .682 .680 .679 .677

> .675 .673 .672 .670 .668

.667 .666 .666 .665 .665

.664

.662

.651

.640

.628

.617

.606

.595

.583

542

.500

.447

.386

.310

.220

.116

.250

.300

•350 •400

. 450

•500 •550

.600

.650

.700

.750 .800

.850

.900

.950

• •

21.58

.040

.042

-044

.046

.048

.050

.052

.054

.056

.058

.060

.062

.064

.066

.068

.908

.904

.900 .896

.893

.889 .885

.882

.878

.874

.870

.867 .863

.859

.856

| Hydrograph |   | T <sub>o</sub> /T <sub>p</sub> |   |   |    |   |    |    |    |    |    |    |
|------------|---|--------------------------------|---|---|----|---|----|----|----|----|----|----|
| Family     | l | 1.5                            | 2 | 3 | 4  | 6 | 10 | 16 | 25 | 36 | 50 | 75 |
| l          | * | *                              | * | * | .* | * | *  | *  | *  | *  | *  | *  |
| 2          | × | *                              | ¥ | ¥ | ÷, | ¥ | ×  | *  | *  | *  | ¥  | ×  |
| 3          | * | ¥                              | ¥ | × | *  | ¥ | *  | *  | *  | *  | ×  | ×  |
| 4          | × | *                              | ¥ | ¥ | *  | * | *  | ¥  | *  | *  | ×  |    |
| 5          | * | *                              | * | × | *  | ¥ | ¥  | ¥  | *  | ×  | ¥  |    |

Table 21.16.--Hydrograph families and  $T_o/T_p$  ratios for which dimensionless hydrograph ratios are given in table 21.17

Asterisks signify that dimensionless hydrograph tabulations are given in table 21.17.

# Table 21.17 --Time, discharge, and accumulated runoff ratios for dimensionless hydrographs

Hydrograph Family 1

| $T_0/T_p = 1$        |              |           |                | Τ <sub>c</sub> | $p/T_p = 1$ | .•5   | נ                            | $T_o/T_p = 2$        |                                 |  |  |
|----------------------|--------------|-----------|----------------|----------------|-------------|-------|------------------------------|----------------------|---------------------------------|--|--|
| Line<br>No.          | t/Tp         | qc/qp     | Qt/Q           | t/Tp           | ₫c/₫₽       | Qt/Q  | t/Tp                         | qc/qp                | Qt/Q                            |  |  |
| 1                    | 0            | 0         | 0              | 0              | 0           | 0     | 0                            | 0                    | 0                               |  |  |
| 2                    | .28          | .029      | .003           | .32            | .012        | .001  | .29                          | .007                 | .001                            |  |  |
| 3                    | .56          | .150      | .021           | .64            | .118        | .017  | .58                          | .035                 | .005                            |  |  |
| 4                    | .84          | .472      | .086           | .96            | .377        | .075  | .87                          | .164                 | .027                            |  |  |
| 5                    | 1.12         | .798      | .216           | 1.28           | .711        | .204  | 1.16                         | .432                 | .090                            |  |  |
| 6                    | 1.40         | .901      | •392           | 1.60           | .815        | .384  | 1.45                         | .669                 | .208                            |  |  |
| 7                    | 1.68         | .776      | •564           | 1.92           | .719        | .565  | 1.74                         | .740                 | .359                            |  |  |
| 8                    | 1.96         | .568      | •703           | 2.24           | .526        | .712  | 2.03                         | .680                 | .511                            |  |  |
| 9                    | 2.24         | .389      | •801           | 2.56           | .352        | .815  | 2.32                         | .561                 | .644                            |  |  |
| 10                   | 2.52         | .258      | •868           | 2.88           | .225        | .884  | 2.61                         | .441                 | .751                            |  |  |
| 11                   | 2.80         | .173      | .913           | 3.20           | .143        | •927  | 2.90                         | .319                 | .833                            |  |  |
| 12                   | 3.08         | .115      | .942           | 3.52           | .090        | •954  | 3.19                         | .212                 | .890                            |  |  |
| 13                   | 3.36         | .078      | .962           | 3.84           | .057        | •972  | 3.48                         | .140                 | .927                            |  |  |
| 14                   | 3.64         | .052      | .976           | 4.16           | .037        | •983  | 3.77                         | .094                 | .952                            |  |  |
| 15                   | 3.92         | .036      | .985           | 4.48           | .024        | •990  | 4.06                         | .063                 | .969                            |  |  |
| 16                   | 4.20         | .024      | .991           | 4.80           | .015        | .995  | 4.35                         | .042                 | •981                            |  |  |
| 17                   | 4.48         | .016      | .995           | 5.12           | .008        | .997  | 4.64                         | .028                 | •988                            |  |  |
| 18                   | 4.76         | .009      | .997           | 5.44           | .004        | .999  | 4.93                         | .017                 | •993                            |  |  |
| 19                   | 5.04         | .005      | .999           | 5.76           | .002        | 1.000 | 5.22                         | .011                 | •996                            |  |  |
| 20                   | 5.32         | .002      | 1.000          | 6.08           | .001        | 1.000 | 5.51                         | .007                 | •998                            |  |  |
| 21<br>22<br>23<br>24 | 5.60<br>5.88 | .001<br>0 | 1.000<br>1.000 | 6.40           | 0           | 1.000 | 5.80<br>6.09<br>6.38<br>6.67 | .004<br>.002<br>.001 | •999<br>1.000<br>1.000<br>1.000 |  |  |

21.60
|                            | т <sub>о</sub> /т                    | p = 3                                |                                      | $T_o/T_p = 4$                        |                                      |                                        | $T_{o}/T_{p} = 6$                      |                                      |                                        |
|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| Line<br>No.                | t/Tp                                 | qc/qp                                | Qt/Q                                 | t/Tp                                 | qc/qp                                | Qt/Q                                   | $t/T_p$                                | qc/qp                                | Qt/Q                                   |
| 1<br>2<br>3<br>4<br>5      | 0<br>.70<br>1.05<br>1.40             | 0<br>.005<br>.027<br>.101<br>.302    | 0<br>.001<br>.005<br>.021<br>.074    | 0<br>.70<br>1.05<br>1.40             | 0<br>.003<br>.015<br>.049<br>.122    | 0<br>.000<br>.011<br>.033              | 0<br>.44<br>.98<br>1.32<br>1.76        | 0<br>.003<br>.018<br>.041<br>.084    | 0<br>.001<br>.003<br>.012<br>.032      |
| 6<br>7<br>8<br>9<br>10     | 1.75<br>2.10<br>2.45<br>2.80<br>3.15 | •563<br>•650<br>•576<br>•460<br>•374 | .185<br>.342<br>.501<br>.635<br>.743 | 1.75<br>2.10<br>2.45<br>2.80<br>3.15 | .298<br>.528<br>.585<br>.518<br>.413 | .087<br>.194<br>.337<br>.479<br>.599   | 2.20<br>2.64<br>3.08<br>3.52<br>3.96   | .176<br>.386<br>.497<br>.430<br>.335 | .074<br>.165<br>.309<br>.459<br>.583   |
| 11<br>12<br>13<br>14<br>15 | 3.50<br>3.85<br>4.20<br>4.55<br>4.90 | .290<br>.201<br>.127<br>.078<br>.047 | .829<br>.892<br>.935<br>.961<br>.977 | 3.50<br>3.85<br>4.20<br>4.55<br>4.90 | •334<br>•273<br>•231<br>•185<br>•128 | •695<br>•774<br>•839<br>•892<br>•933   | 4.40<br>4.84<br>5.28<br>5.72<br>6.16   | .258<br>.202<br>.164<br>.139<br>.124 | .679<br>.754<br>.813<br>.862<br>.905   |
| 16<br>17<br>18<br>19<br>20 | 5.25<br>5.60<br>5.95<br>6.30<br>6.65 | .028<br>.016<br>.009<br>.005<br>.003 | •993<br>•996<br>•998<br>•999         | 5.25<br>5.60<br>5.95<br>6.30<br>6.65 | .080<br>.047<br>.028<br>.017<br>.010 | •959<br>•976<br>•985<br>•991<br>•995   | 6.60<br>7.04<br>7.48<br>7.92<br>8.36   | .100<br>.060<br>.033<br>.018<br>.009 | .941<br>.967<br>.982<br>.991<br>.995   |
| 21<br>22<br>23<br>24<br>25 | 7.00<br>7.35<br>7.70                 | .002<br>.001<br>0                    | •999<br>1.000<br>1.000               | 7.00<br>7.35<br>7.70<br>8.05<br>8.40 | .006<br>.004<br>.003<br>.002<br>.001 | •997<br>•998<br>•999<br>1.000<br>1.000 | 8.80<br>9.24<br>9.68<br>10.12<br>10.56 | .005<br>.003<br>.002<br>.001<br>0    | •997<br>•999<br>•999<br>1.000<br>1.000 |
| 26                         |                                      |                                      |                                      | 8.75                                 | 0                                    | 1.000                                  |                                        |                                      |                                        |

21.61

•

21.62

Table 21.17 (Continued)

•

.

|                            | T <sub>o</sub> /T | p = 10    |       | T <sub>O</sub>                            | /T <sub>p</sub> = 1                  | 6                                    | T <sub>0</sub> /T <sub>p</sub> =25 |       |       |  |
|----------------------------|-------------------|-----------|-------|-------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------|-------|--|
| Line<br>No.                | t/Tp              | qc/qp     | Qt/Q  | t/Tp                                      | q <sub>c</sub> /q <sub>p</sub>       | Qt/Q                                 | t/Tp                               | qc/qp | Qt/Q  |  |
| 1                          | 0                 | 0         | 0     | 0                                         | 0                                    | 0                                    | 0                                  | 0     | 0     |  |
| 2                          | .56               | .002      | .000  | .66                                       | .001                                 | .000                                 | 1.22                               | .002  | .001  |  |
| 3                          | 1.12              | .013      | .004  | 1.32                                      | .006                                 | .002                                 | 2.44                               | .009  | .006  |  |
| 4                          | 1.68              | .027      | .012  | 1.98                                      | .015                                 | .007                                 | 3.66                               | .018  | .018  |  |
| 5                          | 2.24              | .047      | .027  | 2.64                                      | .027                                 | .017                                 | 4.88                               | .027  | .038  |  |
| 6                          | 2.80              | .071      | .052  | 3.30                                      | .037                                 | .033                                 | 6.10                               | .036  | .067  |  |
| 7                          | 3.36              | .115      | .090  | 3.96                                      | .047                                 | .053                                 | 7.32                               | .046  | .103  |  |
| 8                          | 3.92              | .278      | .172  | 4.62                                      | .062                                 | .080                                 | 8.54                               | .116  | .176  |  |
| 9                          | 4.48              | .394      | .312  | 5.28                                      | .092                                 | .117                                 | 9.76                               | .232  | .333  |  |
| 10                         | 5.04              | .322      | .461  | 5.94                                      | .223                                 | .194                                 | 10.98                              | .146  | .503  |  |
| 11                         | 5.60              | .235      | •577  | 6.60                                      | .309                                 | .323                                 | 12.20                              | .088  | .608  |  |
| 12                         | 6.16              | .174      | .662  | 7.26                                      | .243                                 | .457                                 | 13.42                              | .062  | .675  |  |
| 13                         | 6.72              | .136      | .726  | 7.92                                      | .171                                 | .557                                 | 14.64                              | .051  | .726  |  |
| 14                         | 7.28              | .110      | .777  | 8.58                                      | .124                                 | .629                                 | 15.86                              | .045  | .769  |  |
| 15                         | 7.84              | .092      | .819  | 9.24                                      | .097                                 | .683                                 | 17.08                              | .039  | .807  |  |
| 16                         | 8.40              | .079      | .855  | 9.90                                      | .081                                 | .726                                 | 18.30                              | .035  | .840  |  |
| 17                         | 8.96              | .073      | .886  | 10.56                                     | .070                                 | .763                                 | 19.52                              | .031  | .870  |  |
| 18                         | 9.52              | .068      | .916  | 11.22                                     | .061                                 | .794                                 | 20.74                              | .027  | .896  |  |
| 19                         | 10.08             | .065      | .943  | 11.88                                     | .055                                 | .823                                 | 21.96                              | .025  | .920  |  |
| 20                         | 10.64             | .053      | .968  | 12.54                                     | .050                                 | .848                                 | 23.18                              | .025  | .942  |  |
| 21                         | 11.20             | .027      | .984  | 13.20                                     | .047                                 | .872                                 | 24.40                              | .025  | .965  |  |
| 22                         | 11.76             | .012      | .993  | 13.86                                     | .045                                 | .894                                 | 25.62                              | .020  | .985  |  |
| 23                         | 12.32             | .006      | .996  | 14.52                                     | .044                                 | .916                                 | 26.84                              | .005  | .996  |  |
| 24                         | 12.88             | .003      | .998  | 15.18                                     | .043                                 | .937                                 | 28.06                              | .002  | .999  |  |
| 25                         | 13.44             | .002      | .999  | 15.84                                     | .040                                 | .957                                 | 29.28                              | 0     | 1.000 |  |
| 26<br>27<br>28<br>29<br>30 | 14.00<br>14.56    | .001<br>0 | 1.000 | 16.50<br>17.16<br>17.82<br>18.48<br>19.14 | .034<br>.020<br>.008<br>.004<br>.002 | •975<br>•988<br>•995<br>•998<br>•999 |                                    |       |       |  |
| 31<br>32                   |                   |           |       | 19.80<br>20.46                            | .001<br>0                            | 1.000                                |                                    |       |       |  |

|                | т <sub>о</sub> /т | p = 36 |       | Τ <sub>Ο</sub>          | /Tp = 5             | 0                     | $T_o/T_p \approx 75$    |                |                        |  |
|----------------|-------------------|--------|-------|-------------------------|---------------------|-----------------------|-------------------------|----------------|------------------------|--|
| Line<br>No.    | t/Tp              | qc/qp  | Qt/Q  | t/Tp qc/qp Qt/Q         |                     | Qt/Q                  | t/Tp                    | qc/qp          | Qt/Q                   |  |
| 1              | 0                 | 0      | 0     | 0                       | 0                   | 0                     | 0                       | 0              | 0                      |  |
| 2              | 1.70              | .002   | .001  | 2.00                    | .0019               | .001                  | 3.00                    | .0017          | .002                   |  |
| 3              | 3.40              | .008   | .008  | 4.00                    | .0052               | .007                  | 6.00                    | .0039          | .008                   |  |
| 4              | 5.10              | .014   | .021  | 6.00                    | .0085               | .017                  | 9.00                    | .0054          | .018                   |  |
| 5              | 6.80              | .020   | .043  | 8.00                    | .0118               | .031                  | 12.00                   | .0084          | .033                   |  |
| 6              | 8.50              | .026   | .072  | 10.00                   | .0151               | .051                  | 15.00                   | .0106          | .053                   |  |
| 7              | 10.20             | .033   | .109  | 12.00                   | .0192               | .076                  | 18.00                   | .0137          | .079                   |  |
| 8              | 11.90             | .077   | .178  | 14.00                   | .0259               | .109                  | 21.00                   | .0197          | .115                   |  |
| 9              | 13.60             | .177   | .338  | 16.00                   | .0578               | .170                  | 24.00                   | .0516          | .192                   |  |
| 10             | 15.30             | .101   | .513  | 18.00                   | .1330               | .310                  | 27.00                   | .0900          | .344                   |  |
| 11             | 17.00             | .058   | .613  | 20.00                   | .0941               | •475                  | 30.00                   | .0593          | .504                   |  |
| 12             | 18.70             | .044   | .678  | 22.00                   | .0506               | •581                  | 33.00                   | .0321          | .602                   |  |
| 13             | 20.40             | .036   | .728  | 24.00                   | .0357               | •644                  | 36.00                   | .0226          | .661                   |  |
| 14             | 22.10             | .030   | .770  | 26.00                   | .0297               | •692                  | 39.00                   | .0188          | .705                   |  |
| 15             | 23.80             | .027   | .805  | 28.00                   | .0254               | •732                  | 42.00                   | .0161          | .742                   |  |
| 16             | 25.50             | .024   | .838  | 30.00                   | .0219               | .766                  | 45.00                   | .0142          | •775                   |  |
| 17             | 27.20             | .022   | .867  | 32.00                   | .0192               | .797                  | 48.00                   | .0125          | •804                   |  |
| 18             | 28.90             | .020   | .893  | 34.00                   | .0172               | .823                  | 51.00                   | .0112          | •829                   |  |
| 19             | 30.60             | .018   | .917  | 36.00                   | .0159               | .847                  | 54.00                   | .0105          | •852                   |  |
| 20             | 32.30             | .017   | .939  | 38.00                   | .0150               | .870                  | 57.00                   | .0100          | •874                   |  |
| 21             | 34.00             | .017   | .960  | 40.00                   | .0145               | .891                  | 60.00                   | .0097          | .896                   |  |
| 22             | 35.70             | .017   | .982  | 42.00                   | .0140               | .912                  | 63.00                   | .0094          | .916                   |  |
| 23             | 37.40             | .004   | .995  | 44.00                   | .0136               | .932                  | 66.00                   | .0090          | .936                   |  |
| 24             | 39.10             | .002   | .999  | 46.00                   | .0131               | .952                  | 69.00                   | .0087          | .955                   |  |
| 25             | 40.80             | 0      | 1.000 | 48.00                   | .0125               | .971                  | 72.00                   | .0084          | .973                   |  |
| 26<br>27<br>28 |                   |        |       | 50.00<br>52.00<br>54.00 | .0123<br>.0016<br>0 | .989<br>.999<br>1.000 | 75.00<br>78.00<br>81.00 | .0081<br>.0002 | .991<br>1.000<br>1.000 |  |

### Hydrograph Family 2

|                            | T <sub>o</sub> /T                    | p = 1                                |                                       | $T_{o}/T_{p} = 1.5$                  |                                      |                                      |      | $T_o/T_p = 2$                        |                                      |                                         |  |
|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|--------------------------------------|--------------------------------------|-----------------------------------------|--|
| Line<br>No.                | e t/Tp qc/qp Qt/Q                    |                                      | Qt/Q                                  | $t/T_p$ qc/qp Qt/Q                   |                                      |                                      | t/Tp | qc/qp                                | Qt/Q                                 |                                         |  |
| 1<br>2<br>3<br>4<br>5      | 0<br>.28<br>.56<br>.84<br>1.12       | 0<br>.026<br>.170<br>.480<br>.802    | 0<br>.003<br>.023<br>.091<br>.224     | 0<br>.22<br>.44<br>.66<br>.88        | 0<br>.003<br>.041<br>.161<br>.362    | 0<br>.000<br>.004<br>.020<br>.063    |      | 0<br>.28<br>.56<br>.84<br>1.12       | 0<br>.004<br>.040<br>.170<br>.428    | 0<br>.000<br>.005<br>.027<br>.089       |  |
| 6<br>7<br>8<br>9<br>10     | 1.40<br>1.68<br>1.96<br>2.24<br>2.52 | .885<br>.770<br>.550<br>.380<br>.257 | •399<br>•571<br>•708<br>•804<br>•870  | 1.10<br>1.32<br>1.54<br>1.76<br>1.98 | .604<br>.740<br>.790<br>.746<br>.640 | .142<br>.251<br>.375<br>.501<br>.613 |      | 1.40<br>1.68<br>1.96<br>2.24<br>2.52 | .645<br>.715<br>.677<br>.574<br>.472 | .200<br>.340<br>.484<br>.614<br>.722    |  |
| 11<br>12<br>13<br>14<br>15 | 2.80<br>3.08<br>3.36<br>3.64<br>3.92 | .166<br>.113<br>.078<br>.052<br>.034 | .914<br>.943<br>.963<br>.976<br>.985  | 2.20<br>2.42<br>2.64<br>2.86<br>3.08 | .536<br>.414<br>.303<br>.219<br>.160 | .709<br>.786<br>.845<br>.887<br>.918 |      | 2.80<br>3.08<br>3.36<br>3.64<br>3.92 | .369<br>.247<br>.168<br>.113<br>.075 | .809<br>.873<br>.915<br>.945<br>.964    |  |
| 16<br>17<br>18<br>19<br>20 | 4.20<br>4.48<br>4.76<br>5.04<br>5.32 | .023<br>.015<br>.009<br>.004<br>.002 | .991<br>.995<br>.998<br>.999<br>1.000 | 3.30<br>3.52<br>3.74<br>3.96<br>4.18 | .117<br>.088<br>.064<br>.047<br>.035 | •941<br>•947<br>•970<br>•979<br>•985 |      | 4.20<br>4.48<br>4.76<br>5.04<br>5.32 | .050<br>.034<br>.021<br>.014<br>.008 | •977<br>•986<br>•991<br>•995<br>•997    |  |
| 21<br>22<br>23<br>24<br>25 | 5.60<br>5.88                         | .001<br>0                            | 1.000                                 | 4.40<br>4.62<br>4.84<br>5.06<br>5.28 | .025<br>.018<br>.012<br>.007<br>.004 | •990<br>•994<br>•996<br>•998<br>•999 |      | 5.60<br>5.88<br>6.16<br>6.44<br>6.72 | .004<br>.003<br>.002<br>.001<br>0    | .998<br>.999<br>1.000<br>1.000<br>1.000 |  |
| 26<br>27<br>28<br>29       |                                      |                                      |                                       | 5.50<br>5.72<br>5.94<br>6.16         | .003<br>.002<br>.001                 | .999<br>1.000<br>1.000<br>1.000      |      |                                      |                                      |                                         |  |

í

. .

# Table 21.17 (Continued)

|                            | $T_o/T_p = 3$                        |                                      |                                         |        | $T_{\rm O}/T_{\rm p} = 4$            |                                      |                                      |        | $T_{\rm o}/T_{\rm p} = 6$            |                                      |                                      |  |
|----------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------|--------------------------------------|--------------------------------------|--------------------------------------|--------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| Line<br>No.                | t/Tp                                 | qc/qp                                | Qt/Q                                    | 1      | :/Tp                                 | qc/qp                                | Qt/Q                                 |        | t/Tp                                 | qc/qp                                | Qt/Q                                 |  |
| 1<br>2<br>3<br>4<br>5      | 0<br>.32<br>.64<br>.96<br>1.28       | 0<br>.003<br>.017<br>.093<br>.311    | 0<br>.000<br>.003<br>.016<br>.064       | (<br>] | .32<br>.64<br>.96<br>.28             | 0<br>.002<br>.009<br>.036<br>.129    | 0<br>.000<br>.002<br>.007<br>.026    |        | 0<br>.34<br>.68<br>1.02<br>1.36      | 0<br>.001<br>.005<br>.015<br>.037    | 0<br>.000<br>.001<br>.003<br>.010    |  |
| 6<br>7<br>8<br>9<br>10     | 1.60<br>1.92<br>2.24<br>2.56<br>2.88 | .530<br>.615<br>.575<br>.487<br>.409 | .163<br>.298<br>.439<br>.565<br>.671    |        |                                      | •332<br>•501<br>•550<br>•500<br>•422 | .081<br>.179<br>.303<br>.426<br>.535 |        | 1.70<br>2.04<br>2.38<br>2.72<br>3.06 | .098<br>.244<br>.407<br>.464<br>.429 | .027<br>.070<br>.151<br>.261<br>.373 |  |
| 11<br>12<br>13<br>14<br>15 | 3.20<br>3.52<br>3.84<br>4.16<br>4.48 | •344<br>•279<br>•206<br>•135<br>•087 | .760<br>.834<br>.891<br>.931<br>.958    |        | 5.20<br>5.52<br>5.84<br>4.16<br>4.48 | •358<br>•302<br>•274<br>•230<br>•195 | .627<br>.705<br>.773<br>.832<br>.882 |        | 3.40<br>3.74<br>4.08<br>4.42<br>4.76 | .367<br>.309<br>.261<br>.224<br>.193 | •473<br>•557<br>•629<br>•690<br>•742 |  |
| 16<br>17<br>18<br>19<br>20 | 4.80<br>5.12<br>5.44<br>5.76<br>6.08 | .054<br>.032<br>.019<br>.012<br>.008 | •974<br>•984<br>•990<br>•994<br>•997    |        | +.80<br>5.12<br>5.44<br>5.76<br>6.08 | .147<br>.099<br>.061<br>.037<br>.023 | .922<br>.951<br>.970<br>.982<br>.989 |        | 5.10<br>5.44<br>5.78<br>6.12<br>6.46 | .169<br>.152<br>.139<br>.129<br>.113 | .787<br>.828<br>.864<br>.898<br>.928 |  |
| 21<br>22<br>23<br>24<br>25 | 6.40<br>6.72<br>7.04<br>7.36<br>7.68 | .005<br>.003<br>.002<br>.001<br>0    | .998<br>.999<br>1.000<br>1.000<br>1.000 |        | 5.40<br>5.72<br>7.04<br>7.36<br>7.68 | .013<br>.008<br>.005<br>.004<br>.003 | •993<br>•996<br>•997<br>•998<br>•999 |        | 6.80<br>7.14<br>7.48<br>7.82<br>8.16 | .085<br>.055<br>.035<br>.020<br>.012 | •953<br>•971<br>•982<br>•989<br>•993 |  |
| 26<br>27<br>28<br>29<br>30 |                                      |                                      |                                         | 5      | 3.00<br>3.32<br>3.64                 | .002<br>.001<br>0                    | 1.000<br>1.000<br>1.000              |        | 8.50<br>8.84<br>9.18<br>9.52<br>9.86 | .008<br>.005<br>.004<br>.003<br>.002 | •995<br>•997<br>•998<br>•999<br>•999 |  |
| 31<br>32                   |                                      |                                      |                                         |        |                                      |                                      |                                      | נ<br>נ | .0.20<br>.0.54                       | .001<br>0                            | 1.000<br>1.000                       |  |

Table 21.17 (Continued)

|             | Т <sub>о</sub> /т | p = 10 |       | т <sub>о</sub> | $/T_p = 1$ | .6    | Т     | $c_0/T_p =$ | 25    |
|-------------|-------------------|--------|-------|----------------|------------|-------|-------|-------------|-------|
| Line<br>No. | t/Tp              | qc/qp  | Qt/Q  | t <b>/</b> Tp  | qc/qp      | Qt/Q  | t/Tp  | qc/qp       | Qt/Q  |
| 1           | 0                 | 0      | 0     | 0              | 0          | 0     | 0     | 0           | 0     |
| 2           | .63               | .002   | .000  | .90            | .002       | .001  | 1.30  | .002        | .001  |
| 3           | 1.26              | .009   | .003  | 1.80           | .007       | .004  | 2.60  | .006        | .005  |
| 4           | 1.89              | .027   | .011  | 2.70           | .020       | .013  | 3.90  | .014        | .014  |
| 5           | 2.52              | .063   | .032  | 3.60           | .037       | .031  | 5.20  | .024        | .032  |
| 6           | 3.15              | .236   | .102  | 4.50           | .148       | .093  | 6.50  | .088        | .086  |
| 7           | 3.78              | .364   | .241  | 5.40           | .277       | .233  | 7.80  | .210        | .228  |
| 8           | 4.41              | .307   | .397  | 6.30           | .214       | .396  | 9.10  | .146        | .397  |
| 9           | 5.04              | .226   | .521  | 7.20           | .149       | .516  | 10.40 | .097        | .513  |
| 10          | 5.67              | .172   | .613  | 8.10           | .112       | .603  | 11.70 | .072        | .593  |
| 11          | 6.30              | .136   | .685  | 9.00           | .088       | .669  | 13.00 | .057        | .655  |
| 12          | 6.93              | .113   | .743  | 9.90           | .073       | .722  | 14.30 | .049        | .705  |
| 13          | 7.56              | .097   | .792  | 10.80          | .063       | .767  | 15.60 | .044        | .750  |
| 14          | 8.19              | .085   | .834  | 11.70          | .056       | .807  | 16.90 | .039        | .789  |
| 15          | 8.82              | .078   | .872  | 12.60          | .052       | .842  | 18.20 | .035        | .824  |
| 16          | 9.45              | .074   | •907  | 13.50          | .048       | .875  | 19.50 | .033        | .857  |
| 17          | 10.08             | .069   | •940  | 14.40          | .045       | .906  | 20.80 | .031        | .887  |
| 18          | 10.71             | .053   | •969  | 15.30          | .044       | .936  | 22.10 | .029        | .916  |
| 19          | 11.34             | .025   | •987  | 16.20          | .042       | .964  | 23.40 | .028        | .943  |
| 20          | 11.97             | .009   | •995  | 17.10          | .023       | .986  | 24.70 | .027        | .969  |
| 21          | 12.60             | .004   | .998  | 18.00          | .006       | .995  | 26.00 | .014        | .989  |
| 22          | 13.23             | .002   | .999  | 18.90          | .003       | .998  | 27.30 | .004        | .997  |
| 23          | 13.86             | .001   | 1.000 | 19.80          | .001       | 1.000 | 28.60 | .001        | 1.000 |
| 24          | 14.49             | 0      | 1.000 | 20.70          | 0          | 1.000 | 29.90 | 0           | 1.000 |

|                            | To/T                             | p ≈ 36                    |                               | $T_{O}$                 | /Tp = 5             | 0                     | $T_{\rm o}/T_{\rm p} = 75$                |                                           |                                      |  |
|----------------------------|----------------------------------|---------------------------|-------------------------------|-------------------------|---------------------|-----------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--|
| Line<br>No.                | t/Tp                             | qc/qp                     | Qt/Q                          | t/Tp                    | qc/qp               | Qt/G                  | t/Tp                                      | qc/qp                                     | <sup>Q</sup> t/Q                     |  |
| 1                          | 0                                | 0                         | 0                             | 0                       | 0                   | 0                     | 0                                         | 0                                         | 0                                    |  |
| 2                          | 1.79                             | .002                      | .001                          | 2.50                    | .0018               | .002                  | 3.00                                      | .0012                                     | .001                                 |  |
| 3                          | 3.58                             | .006                      | .007                          | 5.00                    | .0047               | .008                  | 6.00                                      | .0027                                     | .006                                 |  |
| 4                          | 5.37                             | .012                      | .019                          | 7.50                    | .0087               | .020                  | 9.00                                      | .0044                                     | .014                                 |  |
| 5                          | 7.16                             | .019                      | .039                          | 10.00                   | .0145               | .041                  | 12.00                                     | .0067                                     | .026                                 |  |
| 6                          | 8.95                             | .057                      | .909                          | 12.50                   | .0615               | .111                  | 15.00                                     | .0108                                     | .045                                 |  |
| 7                          | 10.74                            | .157                      | .232                          | 15.00                   | .1184               | .276                  | 18.00                                     | .0309                                     | .091                                 |  |
| 8                          | 12.53                            | .104                      | .405                          | 17.50                   | .0621               | .442                  | 21.00                                     | .0790                                     | .213                                 |  |
| 9                          | 14.32                            | .068                      | .519                          | 20.00                   | .0433               | .539                  | 24.00                                     | .0624                                     | .369                                 |  |
| 10                         | 16.11                            | .047                      | .596                          | 22.50                   | .0342               | .611                  | 27.00                                     | .0357                                     | .478                                 |  |
| 11                         | 17.90                            | .040                      | .653                          | 25.00                   | .0274               | .667                  | 30.00                                     | .0283                                     | .548                                 |  |
| 12                         | 19.69                            | .034                      | .703                          | 27.50                   | .0234               | .714                  | 33.00                                     | .0234                                     | .606                                 |  |
| 13                         | 21.48                            | .030                      | .745                          | 30.00                   | .0209               | .755                  | 36.00                                     | .0196                                     | .653                                 |  |
| 14                         | 23.27                            | .026                      | .782                          | 32.50                   | .0187               | .791                  | 39.00                                     | .0167                                     | .693                                 |  |
| 15                         | 25.06                            | .025                      | .816                          | 35.00                   | .0167               | .824                  | 42.00                                     | .0150                                     | .728                                 |  |
| 16                         | 26.85                            | .023                      | .848                          | 37.50                   | .0159               | .854                  | 45.00                                     | .0137                                     | .760                                 |  |
| 17                         | 28.64                            | .021                      | .877                          | 40.00                   | .0153               | .882                  | 48.00                                     | .0126                                     | .789                                 |  |
| 18                         | 30.43                            | .020                      | .904                          | 42.50                   | .0147               | .910                  | 51.00                                     | .0115                                     | .816                                 |  |
| 19                         | 32.22                            | .019                      | .930                          | 45.00                   | .0142               | .936                  | 54.00                                     | .0108                                     | .840                                 |  |
| 20                         | 34.01                            | .018                      | .955                          | 47.50                   | .0136               | .962                  | 57.00                                     | .0104                                     | .864                                 |  |
| 21<br>22<br>23<br>24<br>25 | 35.80<br>37.59<br>39.38<br>41.17 | .017<br>.007<br>.001<br>0 | .978<br>.994<br>.999<br>1.000 | 50.00<br>52.50<br>55.00 | .0131<br>.0008<br>0 | .986<br>.999<br>1.000 | 60.00<br>63.00<br>66.00<br>69.00<br>72.00 | .0101<br>.0098<br>.0095<br>.0092<br>.0089 | .886<br>.908<br>.930<br>.950<br>.970 |  |
| 26<br>27<br>28             |                                  |                           |                               |                         |                     |                       | 75.00<br>78.00<br>81.00                   | .0086<br>.0003<br>0                       | .990<br>1.000<br>1.000               |  |

Table 21.17 (Continued)

#### Hydrograph Family 2

Hydrograph Family 3

|                            | $T_o/T_p = 1$                          |                                      |                                      |                       |                                      | $T_0/T_p = 1.5$                      |                                      |  | $T_o/T_p = 2$                        |                                      |                                        |  |
|----------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|----------------------------------------|--|
| Line<br>No.                | ine t/T <sub>p</sub> qc/qp Qt/Q<br>No. |                                      |                                      | t                     | t/T <sub>p</sub> qc/qp Qt/Q          |                                      |                                      |  | t/Tp qc/qp Qt/0                      |                                      |                                        |  |
| 1<br>2<br>3<br>4<br>5      | 0<br>.26<br>.52<br>.78<br>1.04         | 0<br>.048<br>.219<br>.521<br>.762    | 0<br>.005<br>.030<br>.101<br>.224    | י<br>נ                | .29<br>.58<br>.87<br>.16             | 0<br>.028<br>.190<br>.450<br>.656    | 0<br>.003<br>.026<br>.094<br>.212    |  | 0<br>.30<br>.60<br>.90<br>1.20       | 0<br>.012<br>.123<br>.343<br>.570    | 0<br>.001<br>.016<br>.068<br>.169      |  |
| 6<br>7<br>8<br>9<br>10     | 1.30<br>1.56<br>1.82<br>2.08<br>2.34   | .844<br>.778<br>.621<br>.441<br>.305 | .378<br>.533<br>.668<br>.769<br>.841 | 1<br>1<br>2<br>2<br>2 | .45<br>.74<br>.03<br>.32<br>.61      | •734<br>•685<br>•585<br>•445<br>•350 | .360<br>.511<br>.646<br>.756<br>.841 |  | 1.50<br>1.80<br>2.10<br>2.40<br>2.70 | .657<br>.630<br>.562<br>.484<br>.379 | •304<br>•447<br>•578<br>•694<br>•789   |  |
| 11<br>12<br>13<br>14<br>15 | 2.60<br>2.86<br>3.12<br>3.38<br>3.64   | .214<br>.149<br>.103<br>.070<br>.048 | .891<br>.925<br>.949<br>.966<br>.977 |                       | 2.90<br>5.19<br>5.48<br>5.77<br>4.06 | .199<br>.132<br>.089<br>.057<br>.038 | .899<br>.934<br>.958<br>.973<br>.983 |  | 3.00<br>3.30<br>3.60<br>3.90<br>4.20 | .267<br>.177<br>.116<br>.076<br>.050 | .861<br>.910  <br>.942<br>.964<br>.977 |  |
| 16<br>17<br>18<br>19<br>20 | 3.90<br>4.16<br>4.42<br>4.68<br>4.94   | .034<br>.024<br>.016<br>.010<br>.006 | .985<br>.991<br>.995<br>.997<br>.999 |                       | • 35<br>• 64<br>• 93<br>• 22<br>• 51 | .025<br>.015<br>.008<br>.005<br>.003 | •990<br>•994<br>•997<br>•998<br>•999 |  | 4.50<br>4.80<br>5.10<br>5.40<br>5.70 | .033<br>.020<br>.011<br>.006<br>.004 | •987<br>•992<br>•996<br>•998<br>•999   |  |
| 21<br>22<br>23             | 5.20<br>5.46<br>5.72                   | .003<br>.001<br>0                    | 1.000<br>1.000<br>1.000              | 1<br>6<br>6           | .80<br>.09<br>.38                    | .002<br>.001<br>0                    | 1.000<br>1.000<br>1.000              |  | 6.00<br>6.30<br>6.60                 | .002<br>.001<br>0                    | 1.000<br>1.000<br>1.000                |  |

NEH Notice 4-102, August 1972

21.68

ł

.

Table 21.17 (Continued)

|                            | T <sub>o</sub> /T                    | p = 3                                |                                      | To                                   | $/T_p = 4$                           |                                        | $T_{o}/T_{p} = 6$                     |                                      |                                       |  |
|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--|
| Line<br>No.                | t/Tp                                 | qc/qp                                | Qt/Q                                 | t/Tp                                 | qc/qp                                | Qt/Q                                   | $t/T_p$                               | qc/qp                                | ₽t/Q                                  |  |
| 1<br>2<br>3<br>4<br>5      | 0<br>.34<br>.68<br>1.02<br>1.36      | 0<br>.004<br>.088<br>.289<br>.489    | 0<br>.001<br>.012<br>.059<br>.157    | 0<br>.76<br>1.08<br>1.44             | 0<br>.003<br>.044<br>.203<br>.400    | 0<br>.000<br>.007<br>.040<br>.120      | 0<br>.84<br>1.26<br>1.68              | 0<br>.002<br>.021<br>.138<br>.320    | 0<br>.000<br>.004<br>.029<br>.100     |  |
| 6<br>7<br>8<br>9<br>10     | 1.70<br>2.04<br>2.38<br>2.72<br>3.06 | .543<br>.507<br>.445<br>.385<br>.340 | .286<br>.418<br>.537<br>.641<br>.732 | 1.80<br>2.16<br>2.52<br>2.88<br>3.24 | .478<br>.450<br>.397<br>.342<br>.296 | •237<br>•360<br>•473<br>•572<br>•656   | 2.10<br>2.52<br>2.94<br>3.36<br>3.78  | •390<br>•363<br>•314<br>•270<br>•232 | .210<br>.327<br>.432<br>.522<br>.600  |  |
| 11<br>12<br>13<br>14<br>15 | 3.40<br>3.74<br>4.08<br>4.42<br>4.76 | .294<br>.223<br>.149<br>.096<br>.056 | .811<br>.876<br>.922<br>.953<br>.972 | 3.60<br>3.96<br>4.32<br>4.68<br>5.04 | .257<br>.234<br>.210<br>.169<br>.111 | .730<br>.795<br>.855<br>.905<br>.942   | 4.20<br>4.62<br>5.04<br>5.46<br>5.88  | .199<br>.174<br>.155<br>.144<br>.137 | .667<br>.725<br>.776<br>.822<br>.866  |  |
| 16<br>17<br>18<br>19<br>20 | 5.10<br>5.44<br>5.78<br>6.12<br>6.46 | .033<br>.019<br>.013<br>.008<br>.004 | •983<br>•990<br>•994<br>•996<br>•998 | 5.40<br>5.76<br>6.12<br>6.48<br>6.84 | .067<br>.037<br>.022<br>.014<br>.008 | •966<br>•980<br>•988<br>•993<br>•995   | 6.30<br>6.72<br>7.14<br>7.56<br>7.98  | .127<br>.101<br>.063<br>.033<br>.018 | .907<br>.942<br>.968<br>.983<br>.991  |  |
| 21<br>22<br>23<br>24<br>25 | 6.80<br>7.14<br>7.48<br>7.82         | .003<br>.002<br>.001<br>0            | .999<br>.999<br>1.000<br>1.000       | 7.20<br>7.56<br>7.92<br>8.28<br>8.64 | .006<br>.004<br>.002<br>.001<br>0    | •997<br>•999<br>•999<br>1.000<br>1.000 | 8.40<br>8.82<br>9.24<br>9.66<br>10.08 | .010<br>.005<br>.003<br>.002<br>.001 | •995<br>•997<br>•998<br>•999<br>1.000 |  |
| 26<br>27                   |                                      |                                      |                                      |                                      |                                      |                                        | 10.50<br>10.92                        | 0                                    | 1.000<br>1.000                        |  |

Table 21.17(Continued)

```
Hydrograph Family 3
```

-

|                            | T <sub>o</sub> /T                         | p = 10                               |                                      | Τ <sub>c</sub>                   | $T_p = 1$                 | .6                            | т <sub>с</sub>                            | $T_p = 2$                    | 25                                     |
|----------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|---------------------------|-------------------------------|-------------------------------------------|------------------------------|----------------------------------------|
| Line<br>No.                | t/Tp                                      | qc/qp                                | Qt/Q                                 | $t/T_p$                          | ac/ap                     | Qt/Q                          | t/Tp                                      | qc∕qp                        | Qt/Q                                   |
| 1                          | 0                                         | 0                                    | 0                                    | 0                                | 0                         | 0                             | 0                                         | 0                            | 0                                      |
| 2                          | .54                                       | .001                                 | .000                                 | .90                              | .002                      | .001                          | 1.23                                      | .002                         | .001                                   |
| 3                          | 1.08                                      | .008                                 | .002                                 | 1.80                             | .016                      | .007                          | 2.46                                      | .009                         | .006                                   |
| 4                          | 1.62                                      | .069                                 | .017                                 | 2.70                             | .122                      | .053                          | 3.69                                      | .073                         | .043                                   |
| 5                          | 2.16                                      | .231                                 | .077                                 | 3.60                             | .230                      | .170                          | 4.92                                      | .173                         | .154                                   |
| 6                          | 2.70                                      | .303                                 | .184                                 | 4.50                             | .185                      | .308                          | 6.15                                      | .132                         | •291                                   |
| 7                          | 3.24                                      | .269                                 | .298                                 | 5.40                             | .139                      | .415                          | 7.38                                      | .096                         | •394                                   |
| 8                          | 3.78                                      | .223                                 | .396                                 | 6.30                             | .113                      | .499                          | 8.61                                      | .076                         | •471                                   |
| 9                          | 4.32                                      | .188                                 | .478                                 | 7.20                             | .094                      | .568                          | 9.84                                      | .064                         | •534                                   |
| 10                         | 4.86                                      | .159                                 | .548                                 | 8.10                             | .081                      | .626                          | 11.07                                     | .055                         | •588                                   |
| 11                         | 5.40                                      | .139                                 | .607                                 | 9.00                             | .072                      | .677                          | 12.30                                     | .050                         | •635                                   |
| 12                         | 5.94                                      | .122                                 | .659                                 | 9.90                             | .064                      | .722                          | 13.53                                     | .046                         | •678                                   |
| 13                         | 6.48                                      | .108                                 | .705                                 | 10.80                            | .057                      | .762                          | 14.76                                     | .042                         | •718                                   |
| 14                         | 7.02                                      | .097                                 | .746                                 | 11.70                            | .053                      | .799                          | 15.99                                     | .038                         | •754                                   |
| 15                         | 7.56                                      | .089                                 | .783                                 | 12.60                            | .050                      | .833                          | 17.22                                     | .035                         | •787                                   |
| 16                         | 8.10                                      | .081                                 | .817                                 | 13.50                            | .049                      | .866                          | 18.45                                     | .033                         | .818                                   |
| 17                         | 8.64                                      | .078                                 | .849                                 | 14.40                            | .048                      | .898                          | 19.68                                     | .032                         | .947                                   |
| 18                         | 9.18                                      | .077                                 | .880                                 | 15.30                            | .047                      | .930                          | 20.91                                     | .031                         | .875                                   |
| 19                         | 9.72                                      | .077                                 | .911                                 | 16.20                            | .046                      | .961                          | 22.14                                     | .031                         | .903                                   |
| 20                         | 10.26                                     | .075                                 | .941                                 | 17.10                            | .024                      | .984                          | 23.37                                     | .031                         | .931                                   |
| 21<br>22<br>23<br>24<br>25 | 10.80<br>11.34<br>11.88<br>12.42<br>12.96 | .055<br>.030<br>.012<br>.006<br>.004 | •967<br>•984<br>•992<br>•996<br>•998 | 18.00<br>18.90<br>19.80<br>20.70 | .006<br>.004<br>.002<br>0 | .994<br>.997<br>.999<br>1.000 | 24.60<br>25.83<br>27.06<br>28.29<br>29.52 | .031<br>.025<br>.004<br>.001 | .959<br>.984<br>.997<br>1.000<br>1.000 |
| 26<br>27<br>28             | 13.50<br>14.04<br>14.58                   | .002<br>.001                         | .999<br>1.000<br>1.000               |                                  |                           |                               |                                           |                              |                                        |

Hydrograph Family 3

|                  | $T_{o}/T$                               | p = 36                               |                                      | $T_{O_i}$                                 | $/T_{\rm p} = 50$                         | 0                                    | Т                                         | $p/T_p = $                                | 75                                   |
|------------------|-----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|
| Line<br>No.      | t/Tp                                    | qc/qp                                | Qt/Q                                 | $t/T_p$                                   | qc/qp                                     | ବt/ବ                                 | $t/T_p$                                   | qc/qp                                     | Qt/Q                                 |
| 1                | 0                                       | 0                                    | 0                                    | 0                                         | 0                                         | 0                                    | 0                                         | 0                                         | 0                                    |
| 2                | 1.62                                    | .002                                 | .001                                 | 2.25                                      | .0008                                     | .001                                 | 3.25                                      | .0009                                     | .001                                 |
| 3                | 3.24                                    | .006                                 | .006                                 | 4.50                                      | .0070                                     | .007                                 | 6.50                                      | .0057                                     | .009                                 |
| 4                | 4.86                                    | .047                                 | .037                                 | 6.75                                      | .0474                                     | .052                                 | 9.75                                      | .0289                                     | .051                                 |
| 5                | 6.48                                    | .130                                 | .143                                 | 9.00                                      | .0972                                     | .173                                 | 13.00                                     | .0667                                     | .166                                 |
| 6<br>7<br>8<br>9 | 8.10<br>9.72<br>11.34<br>12.96<br>14.58 | .097<br>.069<br>.052<br>.045<br>.041 | .277<br>.376<br>.448<br>.505<br>.551 | 11.25<br>13.50<br>15.75<br>18.00<br>20.25 | .0642<br>.0460<br>.0375<br>.0322<br>.0285 | •307<br>•399<br>•469<br>•527<br>•577 | 16.25<br>19.50<br>22.75<br>26.00<br>29.25 | .0445<br>.0317<br>.0257<br>.0219<br>.0195 | •299<br>•391<br>•460<br>•517<br>•567 |
| 11               | 16.20                                   | .037                                 | .603                                 | 22.50                                     | .0258                                     | .622                                 | 32.50                                     | .0176                                     | .612                                 |
| 12               | 17.82                                   | .034                                 | .645                                 | 24.75                                     | .0239                                     | .664                                 | 35.75                                     | .0160                                     | .652                                 |
| 13               | 19.44                                   | .031                                 | .683                                 | 27.00                                     | .0219                                     | .702                                 | 39.00                                     | .0147                                     | .689                                 |
| 14               | 21.06                                   | .028                                 | .719                                 | 29.25                                     | .0201                                     | .737                                 | 42.25                                     | .0136                                     | .723                                 |
| 15               | 22.68                                   | .025                                 | .750                                 | 31.50                                     | .0185                                     | .769                                 | 45.50                                     | .0127                                     | .755                                 |
| 16               | 24.30                                   | .024                                 | •779                                 | 33.75                                     | .0173                                     | •799                                 | 48.75                                     | .0118                                     | •784                                 |
| 17               | 25.92                                   | .024                                 | .808                                 | 36.00                                     | .0165                                     | •829                                 | 52.00                                     | .0113                                     | •812                                 |
| 18               | 27.54                                   | .024                                 | .836                                 | 38.25                                     | .0162                                     | •854                                 | 55.25                                     | .0109                                     | •839                                 |
| 19               | 29.16                                   | .024                                 | .865                                 | 40.50                                     | .0159                                     | •881                                 | 58.50                                     | .0107                                     | •865                                 |
| 20               | 30.78                                   | .023                                 | .893                                 | 42.75                                     | .0156                                     | •907                                 | 61.75                                     | .0105                                     | •890                                 |
| 21               | 32.40                                   | .023                                 | .920                                 | 45.00                                     | .0153                                     | .933                                 | 65.00                                     | .0103                                     | .915                                 |
| 22               | 34.02                                   | .023                                 | .947                                 | 47.25                                     | .0150                                     | .958                                 | 68.25                                     | .0101                                     | .940                                 |
| 23               | 35.64                                   | .023                                 | .974                                 | 49.50                                     | .0147                                     | .983                                 | 71.50                                     | .0099                                     | .964                                 |
| 24               | 37.26                                   | .007                                 | .992                                 | 51.75                                     | .0028                                     | .998                                 | 74.75                                     | .0097                                     | .988                                 |
| 25               | 38.88                                   | .003                                 | .998                                 | 54.00                                     | 0                                         | 1.000                                | 78.00                                     | .0003                                     | 1.000                                |
| 26               | 40.50                                   | 0                                    | 1.000                                |                                           |                                           |                                      | 81.25                                     | 0                                         | 1.000                                |

. . .

# Table 21.17 (Continued)

Hydrograph Family 4

|                | Т            | $T_{\rm p} =$ | 1              | T                    | $T_{o}/T_{p} = 1.5$ |                        |              | $T_o/T_p = 2$ |                |  |  |
|----------------|--------------|---------------|----------------|----------------------|---------------------|------------------------|--------------|---------------|----------------|--|--|
| Line<br>No.    | t/Tp         | qc/qp         | Qt/Q           | t/Tp                 | ₫c/₫р               | Qt/Q                   | $t/T_p$      | qc/qp         | Qt/Q           |  |  |
| 1              | 0            | 0             | 0              | 0                    | 0                   | 0                      | 0            | 0             | 0              |  |  |
| 2              | .28          | .051          | .005           | .28                  | .038                | .004                   | .32          | .031          | .004           |  |  |
| 3              | .56          | .220          | .033           | .56                  | .166                | .025                   | .64          | .173          | .028           |  |  |
| 4              | .84          | .490          | .107           | .84                  | .360                | .079                   | .96          | .360          | .091           |  |  |
| 5              | 1.12         | .738          | .234           | 1.12                 | .551                | .174                   | 1.28         | .494          | .191           |  |  |
| 6              | 1.40         | .830          | •397           | 1.40                 | .651                | .298                   | 1.60         | •555          | •315           |  |  |
| 7              | 1.68         | .751          | •560           | 1.68                 | .686                | .436                   | 1.92         | •567          | •447           |  |  |
| 8              | 1.96         | .573          | •697           | 1.96                 | .650                | .575                   | 2.24         | •555          | •580           |  |  |
| 9              | 2.24         | .392          | •797           | 2.24                 | .543                | .698                   | 2.56         | •490          | •703           |  |  |
| 10             | 2.52         | .259          | •865           | 2.52                 | .392                | .795                   | 2.88         | •370          | •805           |  |  |
| 11             | 2.80         | .174          | .910           | 2.80                 | .267                | .863                   | 3.20         | .242          | .877           |  |  |
| 12             | 3.08         | .118          | .940           | 3.08                 | .180                | .909                   | 3.52         | .150          | .923           |  |  |
| 13             | 3.36         | .079          | .960           | 3.36                 | .120                | .940                   | 3.84         | .098          | .952           |  |  |
| 14             | 3.64         | .053          | .974           | 3.64                 | .081                | .961                   | 4.16         | .063          | .971           |  |  |
| 15             | 3.92         | .036          | .983           | 3.92                 | .055                | .975                   | 4.48         | .038          | .983           |  |  |
| 16             | 4.20         | .025          | •990           | 4.20                 | .036                | •984                   | 4.80         | .024          | •991           |  |  |
| 17             | 4.48         | .017          | •994           | 4.48                 | .024                | •991                   | 5.12         | .013          | •995           |  |  |
| 18             | 4.76         | .011          | •997           | 4.76                 | .015                | •995                   | 5.44         | .008          | •997           |  |  |
| 19             | 5.04         | .006          | •999           | 5.04                 | .009                | •997                   | 5.76         | .004          | •999           |  |  |
| 20             | 5.32         | .003          | •999           | 5.32                 | .005                | •999                   | 6.08         | .002          | •999           |  |  |
| 21<br>22<br>23 | 5.60<br>5.88 | .001<br>0     | 1.000<br>1.000 | 5.60<br>5.88<br>6.16 | .003<br>.001<br>0   | .999<br>1.000<br>1.000 | 6.40<br>6.72 | .001<br>0     | 1.000<br>1.000 |  |  |

21.72

ł

Table 21.17 (Continued)

|                            | т <sub>о</sub> /т                    | 'p = 3                               |                                      | To                                   | $/T_p = 4$                           |                                      |                                      | $T_{o}/T_{p} =$                      | 6                                    |
|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Line<br>No.                | t/Tp                                 | ₫ <sub>с</sub> ∕₫₽                   | Qt <b>/</b> Q                        | t/Tp                                 | qc <b>/</b> qp                       | Qt/Q                                 | t <b>/</b> Tp                        | qc/qp                                | Qt <b>/</b> Q                        |
| 1<br>2<br>3<br>4<br>5      | 0<br>.28<br>.56<br>.84<br>1.12       | 0<br>.018<br>.086<br>.200<br>.311    | 0<br>.002<br>.013<br>.042<br>.095    | 0<br>.40<br>.80<br>1.20<br>1.60      | 0<br>.023<br>.143<br>.272<br>.326    | 0<br>.028<br>.089<br>.177            | 0<br>.40<br>.80<br>1.20<br>1.60      | 0<br>.014<br>.088<br>.191<br>.244    | 0<br>.002<br>.017<br>.058<br>.122    |
| 6<br>7<br>8<br>9<br>10     | 1.40<br>1.68<br>1.96<br>2.24<br>2.52 | .386<br>.415<br>.422<br>.417<br>.402 | .167<br>.250<br>.337<br>.424<br>.509 | 2.00<br>2.40<br>2.80<br>3.20<br>3.60 | •340<br>•337<br>•323<br>•306<br>•293 | •276<br>•376<br>•473<br>•566<br>•654 | 2.00<br>2.40<br>2.80<br>3.20<br>3.60 | .250<br>.246<br>.240<br>.233<br>.223 | .195<br>.268<br>.340<br>.410<br>.477 |
| 11<br>12<br>13<br>14<br>15 | 2.80<br>3.08<br>3.36<br>3.64<br>3.92 | •394<br>•387<br>•363<br>•316<br>•236 | •591<br>•672<br>•750<br>•820<br>•877 | 4.00<br>4.40<br>4.80<br>5.20<br>5.60 | .286<br>.266<br>.197<br>.122<br>.067 | .740<br>.821<br>.890<br>.937<br>.965 | 4.00<br>4.40<br>4.80<br>5.20<br>5.60 | .212<br>.202<br>.194<br>.189<br>.187 | .541<br>.602<br>.660<br>.717<br>.772 |
| 16<br>17<br>18<br>19<br>20 | 4.20<br>4.48<br>4.76<br>5.04<br>5.32 | .164<br>.108<br>.073<br>.047<br>.030 | •919<br>•947<br>•966<br>•978<br>•986 | 6.00<br>6.40<br>6.80<br>7.20<br>7.60 | .036<br>.021<br>.013<br>.008<br>.005 | •980<br>•988<br>•993<br>•996<br>•998 | 6.00<br>6.40<br>6.80<br>7.20<br>7.60 | .185<br>.175<br>.131<br>.080<br>.046 | .827<br>.880<br>.925<br>.956<br>.975 |
| 21<br>22<br>23<br>24<br>25 | 5.60<br>5.88<br>6.16<br>6.44<br>6.72 | .020<br>.013<br>.008<br>.005<br>.003 | •991<br>•995<br>•997<br>•998<br>•999 | 8.00<br>8.40<br>8.80                 | .002<br>.001<br>0                    | .999<br>1.000<br>1.000               | 8.00<br>8.40<br>8.80<br>9.20<br>9.60 | .027<br>.016<br>.009<br>.005<br>.003 | •985<br>•992<br>•995<br>•997<br>•999 |
| 26<br>27<br>28<br>29       | 7.00<br>7.28<br>7.56<br>7.84         | .002<br>.001                         | 1.000<br>1.000<br>1.000<br>1.000     |                                      |                                      |                                      | 10.00<br>10.40<br>10.80              | .002<br>.001<br>0                    | .999<br>1.000<br>1.000               |

21.74

Table 21.17 (Continued)

Hydrograph Family 4

.

|                       | т <sub>о</sub> /                 | r <sub>p</sub> = 10               | •                                 | Т                                | $p/T_p = 2$                       | 16                                | T,                        | $p/T_p = c$                       | 25                                |
|-----------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|
| Line<br>No.           | t/Tp                             | ac/ap                             | Qt/Q                              | t/Tp                             | qc/qp                             | ବ୍ୟହ                              | t/Tp                      | ₫c/₫p                             | Qt/Q                              |
| 1<br>2<br>3<br>4<br>5 | 0<br>.50<br>1.00<br>1.50<br>2.00 | 0<br>.015<br>.079<br>.151<br>.177 | 0<br>.003<br>.020<br>.062<br>.122 | 0<br>.62<br>1.24<br>1.86<br>2.48 | 0<br>.015<br>.064<br>.112<br>.128 | 0<br>.003<br>.022<br>.062<br>.117 | 0<br>2.04<br>3.06<br>4.08 | 0<br>.025<br>.070<br>.092<br>.082 | 0<br>.009<br>.045<br>.106<br>.170 |
| 6                     | 2.50                             | .170                              | .186                              | 3.10                             | .119                              | .173                              | 5.10                      | .068                              | .227                              |
| 7                     | 3.00                             | .159                              | .247                              | 3.72                             | .105                              | .225                              | 6.12                      | .062                              | .276                              |
| 8                     | 3.50                             | .152                              | .304                              | 4.34                             | .097                              | .271                              | 7.14                      | .059                              | .321                              |
| 9                     | 4.00                             | .146                              | .358                              | 4.96                             | .094                              | .315                              | 8.16                      | .056                              | .365                              |
| 10                    | 4.50                             | .141                              | .411                              | 5.58                             | .091                              | .357                              | 9.18                      | .055                              | .407                              |
| 11                    | 5.00                             | .136                              | .462                              | 6.20                             | .089                              | •398                              | 10.20                     | .054                              | .448                              |
| 12                    | 5.50                             | .131                              | .511                              | 6.82                             | .087                              | •438                              | 11.22                     | .053                              | .488                              |
| 13                    | 6.00                             | .126                              | .558                              | 7.44                             | .085                              | •478                              | 12.24                     | .052                              | .528                              |
| 14                    | 6.50                             | .121                              | .604                              | 8.06                             | .082                              | •516                              | 13.26                     | .050                              | .566                              |
| 15                    | 7.00                             | .116                              | .647                              | 8.68                             | .079                              | •553                              | 14.28                     | .049                              | .603                              |
| 16                    | 7.50                             | .112                              | .689                              | 9.30                             | .076                              | .588                              | 15.30                     | .047                              | .639                              |
| 17                    | 8.00                             | .112                              | .730                              | 9.92                             | .074                              | .623                              | 16.32                     | .046                              | .674                              |
| 18                    | 8.50                             | .111                              | .771                              | 10.54                            | .072                              | .656                              | 17.34                     | .045                              | .709                              |
| 19                    | 9.00                             | .111                              | .812                              | 11.16                            | .071                              | .689                              | 18.36                     | .044                              | .742                              |
| 20                    | 9.50                             | .111                              | .852                              | 11.78                            | .070                              | .721                              | 19.38                     | .044                              | .775                              |
| 21                    | 10.00                            | .110                              | .893                              | 12.40                            | .069                              | •753                              | 20.40                     | .044                              | .809                              |
| 22                    | 10.50                            | .100                              | .931                              | 13.02                            | .069                              | •785                              | 21.42                     | .044                              | .842                              |
| 23                    | 11.00                            | .065                              | .962                              | 13.64                            | .069                              | •816                              | 22.44                     | .044                              | .875                              |
| 24                    | 11.50                            | .033                              | .980                              | 14.26                            | .069                              | •848                              | 23.46                     | .044                              | .908                              |
| 25                    | 12.00                            | .025                              | .990                              | 14.88                            | .069                              | •879                              | 24.48                     | .044                              | .941                              |
| 26                    | 12.50                            | .007                              | .996                              | 15.50                            | .069                              | .911                              | 25.50                     | .039                              | .972                              |
| 27                    | 13.00                            | .004                              | .998                              | 16.12                            | .068                              | .942                              | 26.52                     | .012                              | .992                              |
| 28                    | 13.50                            | .002                              | .999                              | 16.74                            | .053                              | .970                              | 27.54                     | .004                              | .998                              |
| 29                    | 14.00                            | .001                              | 1.000                             | 17.36                            | .023                              | .987                              | 28.56                     | .001                              | 1.000                             |
| 30                    | 14.50                            | 0                                 | 1.000                             | 17.98                            | .009                              | .995                              | 29.58                     | 0                                 | 1.000                             |
| 31<br>32<br>33<br>34  |                                  |                                   |                                   | 18.60<br>19.22<br>19.84<br>20.46 | .004<br>.002<br>.001              | .998<br>.999<br>1.000<br>1.000    |                           |                                   |                                   |

NEH Notice 4-102, August 1972

. .

Ľ

### Table 21.17 (Continued)

Hydrograph Family 4

|                            | т <sub>о</sub> /1                         | r <sub>p</sub> = 36                       |                                      | Т                                         | $o/T_p = 2$                               | 50                                   | T                    | $o/T_p = 1$       | 1                      |
|----------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|----------------------|-------------------|------------------------|
| Line<br>No.                | t/Tp                                      | qc/qp                                     | Qt/Q                                 | t/Tp                                      | qc/qp                                     | Qt∕Q                                 | t/Tp                 | qc/qp             | Qt/Q                   |
| 1                          | 0                                         | 0                                         | 0                                    | 0                                         | 0                                         | 0                                    | 0                    | 0                 | 0                      |
| 2                          | 1.50                                      | .0306                                     | .017                                 | 2.00                                      | .0277                                     | .020                                 | .26                  | .021              | .002                   |
| 3                          | 3.00                                      | .0575                                     | .066                                 | 4.00                                      | .0464                                     | .075                                 | .52                  | .106              | .014                   |
| 4                          | 4.50                                      | .0672                                     | .135                                 | 6.00                                      | .0435                                     | .141                                 | .78                  | .289              | .052                   |
| 5                          | 6.00                                      | .0492                                     | .199                                 | 8.00                                      | .0378                                     | .201                                 | 1.04                 | .530              | .131                   |
| 6                          | 7.50                                      | .0433                                     | .251                                 | 10.00                                     | .0335                                     | •254                                 | 1.30                 | .740              | •254                   |
| 7                          | 9.00                                      | .0418                                     | .298                                 | 12.00                                     | .0307                                     | •301                                 | 1.56                 | .848              | •407                   |
| 8                          | 10.50                                     | .0408                                     | .344                                 | 14.00                                     | .0291                                     | •345                                 | 1.82                 | .767              | •563                   |
| 9                          | 12.00                                     | .0400                                     | .388                                 | 16.00                                     | .0282                                     | •388                                 | 2.08                 | .590              | •693                   |
| 10                         | 13.50                                     | .0391                                     | .432                                 | 18.00                                     | .0274                                     | •429                                 | 2.34                 | .406              | •789                   |
| 11                         | 15.00                                     | .0382                                     | .475                                 | 20.00                                     | .0266                                     | .468                                 | 2.60                 | .279              | .855                   |
| 12                         | 16.50                                     | .0371                                     | .517                                 | 22.00                                     | .0258                                     | .507                                 | 2.86                 | .193              | .901                   |
| 13                         | 18.00                                     | .0358                                     | .557                                 | 24.00                                     | .0250                                     | .544                                 | 3.12                 | .134              | .933                   |
| 14                         | 19.50                                     | .0341                                     | .596                                 | 26.00                                     | .0242                                     | .581                                 | 3.38                 | .092              | .954                   |
| 15                         | 21.00                                     | .0319                                     | .632                                 | 28.00                                     | .0234                                     | .616                                 | 3.64                 | .065              | .969                   |
| 16                         | 22.50                                     | .0308                                     | .667                                 | 30.00                                     | .0230                                     | .650                                 | 3.90                 | .044              | •980                   |
| 17                         | 24.00                                     | .0306                                     | .701                                 | 32.00                                     | .0229                                     | .683                                 | 4.16                 | .030              | •987                   |
| 18                         | 25.50                                     | .0306                                     | .735                                 | 34.00                                     | .0227                                     | .718                                 | 4.42                 | .021              | •992                   |
| 19                         | 27.00                                     | .0306                                     | .769                                 | 36.00                                     | .0226                                     | .751                                 | 4.68                 | .015              | •995                   |
| 20                         | 28.50                                     | .0306                                     | .803                                 | 38.00                                     | .0225                                     | .784                                 | 4.94                 | .009              | •995                   |
| 21<br>22<br>23<br>24<br>25 | 30.00<br>31.50<br>33.00<br>34.50<br>36.00 | .0306<br>.0306<br>.0306<br>.0306<br>.0306 | .837<br>.871<br>.905<br>.939<br>.973 | 40.00<br>42.00<br>44.00<br>46.00<br>48.00 | .0224<br>.0222<br>.0221<br>.0219<br>.0219 | .817<br>.850<br>.883<br>.915<br>.948 | 5.20<br>5.46<br>5.72 | .005<br>.002<br>0 | .999<br>1.000<br>1.000 |
| 26<br>27<br>28             | 37.50<br>39.00<br>40.50                   | .0085<br>.0009<br>0                       | .994<br>1.000<br>1.000               | 50.00<br>52.00<br>54.00                   | .0217<br>.0029<br>0                       | .980<br>.998<br>1.000                |                      |                   |                        |

| 21.76 |  |
|-------|--|
|-------|--|

Table 21.17 (Continued)

|                            | <sup>т</sup> ./т                     | p = 1.5                              |                                        | $T_{o}$                              | /T <sub>p</sub> = 2                  |                                      | $T_{O}$                              | $/T_{p} = 3$                         |                                      |
|----------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Line<br>No.                | t/Tp                                 | ac/ap                                | <sup>Q</sup> t <b>∕</b> Q              | t/Tp                                 | ac/ap                                | Qt/Q                                 | t/Tp                                 | qc/qp                                | Qt/Q                                 |
| 1<br>2<br>3<br>4<br>5      | 0<br>.25<br>.50<br>.75<br>1.00       | 0<br>.013<br>.065<br>.173<br>.306    | 0<br>.001<br>.008<br>.030<br>.075      | 0<br>.25<br>.50<br>.75<br>1.00       | 0<br>.010<br>.048<br>.127<br>.227    | 0<br>.001<br>.006<br>.022<br>.055    | 0<br>.34<br>.68<br>1.02<br>1.36      | 0<br>.010<br>.068<br>.150<br>.229    | 0<br>.001<br>.011<br>.039<br>.086    |
| 6<br>7<br>9<br>10          | 1.25<br>1.50<br>1.75<br>2.00<br>2.25 | .434<br>.562<br>.680<br>.737<br>.673 | .143<br>.235<br>.350<br>.481<br>.611   | 1.25<br>1.50<br>1.75<br>2.00<br>2.25 | .318<br>.389<br>.448<br>.523<br>.609 | .106<br>.171<br>.248<br>.338<br>.443 | 1.70<br>2.04<br>2.38<br>2.72<br>3.06 | •283<br>•315<br>•339<br>•378<br>•459 | .151<br>.226<br>.308<br>.399<br>.504 |
| 11<br>12<br>13<br>14<br>15 | 2.50<br>3.75<br>3.00<br>3.25<br>3.50 | .530<br>.381<br>.262<br>.185<br>.129 | .722<br>.806<br>.866<br>.907<br>.936   | 2.50<br>2.75<br>3.00<br>3.25<br>3.50 | .642<br>.576<br>.450<br>.322<br>.222 | .558<br>.671<br>.766<br>.837<br>.888 | 3.40<br>3.74<br>4.08<br>4.42<br>4.76 | .509<br>.446<br>.310<br>.190<br>.117 | .626<br>.746<br>.841<br>.904<br>.943 |
| 16<br>17<br>18<br>19<br>20 | 3.75<br>4.00<br>4.25<br>4.50<br>4.75 | .090<br>.063<br>.045<br>.031<br>.022 | •956<br>•970<br>•980<br>•987<br>•992   | 3.75<br>4.00<br>4.25<br>4.50<br>4.75 | .156<br>.109<br>.075<br>.053<br>.037 | .923<br>.947<br>.964<br>.976<br>.984 | 5.10<br>5.44<br>5.78<br>6.12<br>6.46 | .069<br>.040<br>.025<br>.016<br>.009 | •966<br>•980<br>•988<br>•993<br>•997 |
| 21<br>22<br>23<br>24<br>25 | 5.00<br>5.25<br>5.50<br>5.75<br>6.00 | .014<br>.009<br>.005<br>.003<br>.001 | .995<br>.998<br>.999<br>1.000<br>1.000 | 5.00<br>5.25<br>5.50<br>5.75<br>6.00 | .025<br>.017<br>.011<br>.007<br>.004 | .990<br>.994<br>.996<br>.998<br>.999 | 6.80<br>7.14<br>7.48<br>7.82         | .005<br>.003<br>.001<br>0            | .998<br>.999<br>1.000<br>1.000       |
| 26<br>27<br>28             | 6.25                                 | 0                                    | 1.000                                  | 6.25<br>6.50<br>6.75                 | .002<br>.001<br>0                    | 1.000<br>1.000<br>1.000              |                                      |                                      |                                      |

÷

•

|                            | Table                                | 21.17                                | (Continu                               | led)                                 | Hydrograph Family 5                  |                                      |                                           |                                      |                                      |
|----------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|
|                            | T <sub>O.</sub>                      | $/T_p = 4$                           |                                        | To                                   | /T <sub>p</sub> = 6                  |                                      | т                                         | ₀/T <sub>p =</sub>                   | 10                                   |
| Line<br>No.                | t/T <sub>p</sub>                     | q <sub>c</sub> ∕q <sub>p</sub>       | Qt/Q                                   | t/Tp                                 | qc/qp                                | Qt/Q                                 | t/Tp                                      | qc/qp                                | Qt/Q                                 |
| 1<br>2<br>3<br>4<br>5      | 0<br>.72<br>1.08<br>1.44             | 0<br>.010<br>.053<br>.124<br>.181    | 0<br>.001<br>.010<br>.033<br>.074      | 0<br>.52<br>1.04<br>1.56<br>2.08     | 0<br>.015<br>.070<br>.130<br>.159    | 0<br>.003<br>.019<br>.057<br>.112    | 0<br>.67<br>1.34<br>2.01<br>2.68          | 0<br>.013<br>.061<br>.091<br>.102    | 0<br>.003<br>.022<br>.059<br>.107    |
| 6<br>7<br>8<br>9<br>10     | 1.80<br>2.16<br>2.52<br>2.88<br>3.24 | .220<br>.243<br>.256<br>.263<br>.273 | .127<br>.189<br>.255<br>.325<br>.396   | 2.60<br>3.12<br>3.64<br>4.16<br>4.68 | .172<br>.178<br>.182<br>.183<br>.184 | .176<br>.242<br>.311<br>.381<br>.451 | 3.35<br>4.02<br>4.69<br>5.36<br>6.03      | .107<br>.110<br>.111<br>.111<br>.112 | .159<br>.213<br>.268<br>.323<br>.378 |
| 11<br>12<br>13<br>14<br>15 | 3.60<br>3.96<br>4.32<br>4.68<br>5.04 | •308<br>•380<br>•427<br>•377<br>•260 | •473<br>•565<br>•672<br>•779<br>•864   | 5.20<br>5.72<br>6.24<br>6.76<br>7.28 | .218<br>.285<br>.324<br>.267<br>.133 | .527<br>.623<br>.740<br>.852<br>.929 | 6.70<br>7.37<br>8.04<br>8.71<br>9.38      | .112<br>.112<br>.116<br>.160<br>.198 | .434<br>.490<br>.546<br>.615<br>.704 |
| 16<br>17<br>18<br>19<br>20 | 5.40<br>5.76<br>6.12<br>6.48<br>6.84 | .155<br>.094<br>.055<br>.032<br>.019 | .919<br>.953<br>.972<br>.984<br>.991   | 7.80<br>8.32<br>8.84<br>9.36<br>9.88 | .064<br>.029<br>.016<br>.007<br>.003 | •966<br>•984<br>•993<br>•997<br>•999 | 10.05<br>10.72<br>11.39<br>12.06<br>12.73 | .212<br>.168<br>.074<br>.027<br>.010 | .805<br>.900<br>.960<br>.985<br>.994 |
| 21<br>22<br>23<br>24<br>25 | 7.20<br>7.56<br>7.92<br>8.28<br>8.64 | .012<br>.007<br>.004<br>.002<br>0    | •995<br>•997<br>•999<br>1.000<br>1.000 | 10.40<br>10.92                       | .001<br>0                            | 1.000<br>1.000                       | 13.40<br>14.07<br>14.74                   | .005<br>.002<br>0                    | .998<br>1.000<br>1.000               |

Table 21.17 (Continued)

 $T_o/T_p = 25$ 

t/T<sub>p</sub> q<sub>c</sub>/q<sub>p</sub> Qt/Q

T<sub>0</sub>/T<sub>p</sub> = 16

Line t/T<sub>p</sub> q<sub>c</sub>/q<sub>p</sub> Qt/Q No.

| .80 .008 .002<br>1.60 .046 .018<br>2.40 .060 .050<br>3.20 .065 .087 | 4.00.067.1264.80.067.1665.60.068.2066.40.068.2467.20.068.286 | 8.00 .068 .327<br>8.80 .068 .367<br>9.60 .068 .407<br>10.40 .068 .448<br>11.20 .068 .488 | 12.00 .068 .528<br>12.80 .086 .574<br>13.60 .121 .636<br>14.40 .133 .711<br>15.20 .136 .791 | 16.00 .137 .872<br>16.80 .098 .941<br>17.60 .033 .980<br>18.40 .012 .993 |
|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 3.20                                                                | 4.00<br>4.80<br>5.60<br>6.40<br>7.20                         | 8.00<br>8.80<br>9.60<br>10.40<br>11.20                                                   | 12.00<br>12.80<br>13.60<br>14.40<br>15.20                                                   | 16.00<br>16.80                                                           |
| 4<br>5                                                              | 6<br>7<br>8<br>9<br>10                                       | 11<br>12<br>13<br>14<br>15                                                               | 16<br>17<br>18<br>19<br>20                                                                  | 21<br>22                                                                 |

| 0<br>1.25<br>2.50<br>3.75<br>5.00 | 0<br>.015<br>.039<br>.043<br>.044 | 0<br>.007<br>.032<br>.070 |
|-----------------------------------|-----------------------------------|---------------------------|
| 6.25                              | .044                              | .151                      |
| 7.50                              | .044                              | .191                      |
| 8.75                              | .044                              | .232                      |
| 10.00                             | .044                              | .273                      |
| 11.25                             | .044                              | .314                      |
| 12.50                             | .044                              | •354                      |
| 13.75                             | .044                              | •395                      |
| 15.00                             | .044                              | •436                      |
| 16.25                             | .044                              | •47 <b>6</b>              |
| 17.50                             | .044                              | •517                      |
| 18.75                             | .045                              | •558                      |
| 20.00                             | .067                              | •610                      |
| 21.25                             | .083                              | •679                      |
| 22.50                             | .087                              | •758                      |
| 23.75                             | .087                              | •839                      |
| 25.00                             | .088                              | •920                      |
| 26.25                             | .035                              | •976                      |
| 27.50                             | .006                              | •995                      |
| 28.75                             | .002                              | •999                      |
| 30.00                             | 0                                 | 1•000                     |

| Table | 21.17 | (Concluded) |
|-------|-------|-------------|
|-------|-------|-------------|

| To/Tp | = | 36 |
|-------|---|----|
|-------|---|----|

 $T_o/T_p = 50$ 

| Line<br>No.                | t/Tp                                      | qc/qp                                     | €t/૨                                 | t/T                                       | p                | Qc∕qp                                             | <sup>Q</sup> t/Q                     |
|----------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|------------------|---------------------------------------------------|--------------------------------------|
| 1<br>2<br>3<br>4<br>5      | 0<br>1.50<br>3.00<br>4.50<br>6.00         | 0<br>.0195<br>.0275<br>.0294<br>.0300     | 0<br>.011<br>.037<br>.068<br>.101    | 0<br>2.00<br>4.00<br>6.00<br>8.00         |                  | .0167<br>.0204<br>.0214<br>.0216                  | 0<br>.012<br>.040<br>.071<br>.102    |
| 6<br>7<br>8<br>9<br>10     | 7.50<br>9.00<br>10.50<br>12.00<br>13.50   | .0301<br>.0301<br>.0301<br>.0301<br>.0301 | .135<br>.168<br>.202<br>.235<br>.268 | 10.00<br>12.00<br>14.00<br>16.00<br>18.00 |                  | .0216<br>.0216<br>.0216<br>.0216<br>.0216         | .134<br>.166<br>.198<br>.230<br>.262 |
| 11<br>12<br>13<br>14<br>15 | 15.00<br>16.50<br>18.00<br>19.50<br>21.00 | .0301<br>.0301<br>.0301<br>.0301<br>.0301 | •302<br>•335<br>•369<br>•402<br>•435 | 20.00<br>22.00<br>24.00<br>26.00<br>28.00 | 0<br>0<br>0<br>0 | .0216<br>.0216<br>.0216<br>.0216<br>.0216         | •294<br>•326<br>•358<br>•390<br>•422 |
| 16<br>17<br>18<br>19<br>20 | 22.50<br>24.00<br>25.50<br>27.00<br>28.50 | .0301<br>.0311<br>.0364<br>.0425<br>.0480 | .469<br>.503<br>.540<br>.584<br>.634 | 30.0<br>32.0<br>34.0<br>36.0<br>38.0      | 0<br>0<br>0<br>0 | .0216<br>.0217<br>.0243<br>.0287<br>.0329         | .454<br>.486<br>.520<br>.559<br>.604 |
| 21<br>22<br>23<br>24<br>25 | 30.00<br>31.50<br>33.00<br>34.50<br>36.00 | .0525<br>.0561<br>.0584<br>.0598<br>.0603 | .690<br>.750<br>.814<br>.879<br>.946 | 40.0<br>42.0<br>44.0<br>46.0<br>48.0      | 0<br>0<br>0<br>0 | .0363<br>.0391<br>.0411<br>.042 <u>3</u><br>.0430 | .656<br>.711<br>.771<br>.832<br>.895 |
| 26<br>27<br>28<br>29       | 37.50<br>39.00<br>40.50                   | .0167<br>.0018<br>0                       | .989<br>.999<br>1.000                | 50.0<br>52.0<br>54.0<br>56.0              |                  | .0433<br>.0058<br>.0002                           | •959<br>•995<br>1.000<br>1.000       |

.



<sup>(210-</sup>VI-NEH-4, Amend. 6, March 1985)

REVISED 9-10-63

.

•

-



Figure 21-3. Chart for selecting a hydrograph family for a given rainfall and runoff curve number.

NEH Notice 4-102, August 1972

-

•

Ĵ

 $\bigcirc$ 



Figure 21-4. Duration of excess rainfall for a 6-hour rainfall and for runoff curve numbers 40 to 100.

NEH Notice 4-102, August 1972

.





 $\bigcirc$ 

 $\bigcirc$ 

FIGURE 21.5 (1 of 5)

(210-VI-NEH-4, Amend. 6, March 1985)



FIGURE 21.5 (2 of 5)

<sup>(210-</sup>VI-NEH-4, Amend. 6, March 1985)





 $\left( \right)$ 

C

FIGURE 21.5 (3 of 5)

(210-VI-NEH-4, Amend. 6, March 1985)



FIGURE 21.5 (4 of 5)

(210-VI-NEH-4, Amend. 6, March 1985)



 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

FIGURE 21.5 (5 of 5)

(210-VI-NEH-4, Amend. 6, March 1985)

. .

·

. .

. .



 $\bigcirc$ 

 $\bigcirc$ 

FIGURE 21.6 (1 of 5)

21.93





FIGURE 21.6 (2 of 5)



 $\bigcirc$ 

FIGURE 21.6 (3 of 5)

21.95

ł

21.96



FIGURE 21.6 (4 of 5)

۰,


FIGURE 21.6 (5 of 5)

21.97

•

C

Ć



FIGURE 21.7 (1 of 5)



FIGURE 21.7 (2 of 5)



FIGURE 21.7 (3 of 5)



FIGURE 21.7 (4 of 5)

21.102





FIGURE 21.7 (5 of 5)

C



65\* 30

ES 1023

65115

Sheet 1 of 5



C



A second s

(



ES 1023 Sheet 4 of 5



FIGURE 21.8 (5 of 5)

21.109



FIGURE 21.9 (1 of 5)

21.111



MINIMUM SIX-HOUR PRECIPITATION (inches) for developing the FREEBOARD HYDROGRAPH for CLASS (a) STRUCTURES or the EMERGENCY SPILLWAY HYDROGRAPH for CLASS (b) STRUCTURES



21.112

Sheet 2 of 5



FIGURE 21.9 (3 of 5)

21.113

• •



FIGURE 21.9 (4 of 5)



SIX-HOUR PRECIPITATION (inches) for developing the FREEBOARD HYDROGRAPH for CLASS (c) STRUCTURES



. .

(Prob. max. 6-hour Precipitation from U.S.W.B. 1942)

FIGURE 21.9 (5 of 5)